

Jake VanderPlas

A Whirlwind Tour of Python

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-96465-1

[LSI]

A Whirlwind Tour of Python
by Jake VanderPlas

Copyright © 2016 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Dawn Schanafelt
Production Editor: Kristen Brown
Copyeditor: Jasmine Kwityn

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

August 2016: First Edition

Revision History for the First Edition
2016-08-10: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. A Whirlwind Tour
of Python, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

Table of Contents

A Whirlwind Tour of Python. 1
Introduction 1
Using Code Examples 2
How to Run Python Code 5
A Quick Tour of Python Language Syntax 7
Basic Python Semantics: Variables and Objects 13
Basic Python Semantics: Operators 17
Built-In Types: Simple Values 24
Built-In Data Structures 30
Control Flow 37
Defining and Using Functions 41
Errors and Exceptions 45
Iterators 52
List Comprehensions 58
Generators 61
Modules and Packages 66
String Manipulation and Regular Expressions 69
A Preview of Data Science Tools 84
Resources for Further Learning 90

v

A Whirlwind Tour of Python

Introduction
Conceived in the late 1980s as a teaching and scripting language,
Python has since become an essential tool for many programmers,
engineers, researchers, and data scientists across academia and
industry. As an astronomer focused on building and promoting the
free open tools for data-intensive science, I’ve found Python to be a
near-perfect fit for the types of problems I face day to day, whether
it’s extracting meaning from large astronomical datasets, scraping
and munging data sources from the Web, or automating day-to-day
research tasks.

The appeal of Python is in its simplicity and beauty, as well as the
convenience of the large ecosystem of domain-specific tools that
have been built on top of it. For example, most of the Python code
in scientific computing and data science is built around a group of
mature and useful packages:

• NumPy provides efficient storage and computation for multidi‐
mensional data arrays.

• SciPy contains a wide array of numerical tools such as numeri‐
cal integration and interpolation.

• Pandas provides a DataFrame object along with a powerful set
of methods to manipulate, filter, group, and transform data.

• Matplotlib provides a useful interface for creation of
publication-quality plots and figures.

• Scikit-Learn provides a uniform toolkit for applying common
machine learning algorithms to data.

1

• IPython/Jupyter provides an enhanced terminal and an interac‐
tive notebook environment that is useful for exploratory analy‐
sis, as well as creation of interactive, executable documents. For
example, the manuscript for this report was composed entirely
in Jupyter notebooks.

No less important are the numerous other tools and packages which
accompany these: if there is a scientific or data analysis task you
want to perform, chances are someone has written a package that
will do it for you.

To tap into the power of this data science ecosystem, however, first
requires familiarity with the Python language itself. I often
encounter students and colleagues who have (sometimes extensive)
backgrounds in computing in some language—MATLAB, IDL, R,
Java, C++, etc.—and are looking for a brief but comprehensive tour
of the Python language that respects their level of knowledge rather
than starting from ground zero. This report seeks to fill that niche.

As such, this report in no way aims to be a comprehensive introduc‐
tion to programming, or a full introduction to the Python language
itself; if that is what you are looking for, you might check out one of
the recommended references listed in “Resources for Further Learn‐
ing” on page 90. Instead, this will provide a whirlwind tour of some
of Python’s essential syntax and semantics, built-in data types and
structures, function definitions, control flow statements, and other
aspects of the language. My aim is that readers will walk away with a
solid foundation from which to explore the data science stack just
outlined.

Using Code Examples
Supplemental material (code examples, IPython notebooks, etc.) is
available for download at https://github.com/jakevdp/WhirlwindTour
OfPython/.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.

2 | A Whirlwind Tour of Python

Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example: “A
Whirlwind Tour of Python by Jake VanderPlas (O’Reilly). Copyright
2016 O’Reilly Media, Inc., 978-1-491-96465-1.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

Installation and Practical Considerations
Installing Python and the suite of libraries that enable scientific
computing is straightforward whether you use Windows, Linux, or
Mac OS X. This section will outline some of the considerations
when setting up your computer.

Python 2 versus Python 3
This report uses the syntax of Python 3, which contains language
enhancements that are not compatible with the 2.x series of Python.
Though Python 3.0 was first released in 2008, adoption has been rel‐
atively slow, particularly in the scientific and web development com‐
munities. This is primarily because it took some time for many of
the essential packages and toolkits to be made compatible with the
new language internals. Since early 2014, however, stable releases of
the most important tools in the data science ecosystem have been
fully compatible with both Python 2 and 3, and so this report will
use the newer Python 3 syntax. Even though that is the case, the vast
majority of code snippets in this report will also work without modi‐
fication in Python 2: in cases where a Py2-incompatible syntax is
used, I will make every effort to note it explicitly.

Installation with conda
Though there are various ways to install Python, the one I would
suggest—particularly if you wish to eventually use the data science
tools mentioned earlier—is via the cross-platform Anaconda distri‐
bution. There are two flavors of the Anaconda distribution:

Using Code Examples | 3

• Miniconda gives you the Python interpreter itself, along with a
command-line tool called conda which operates as a cross-
platform package manager geared toward Python packages,
similar in spirit to the apt or yum tools that Linux users might be
familiar with.

• Anaconda includes both Python and conda, and additionally
bundles a suite of other pre-installed packages geared toward
scientific computing.

Any of the packages included with Anaconda can also be installed
manually on top of Miniconda; for this reason, I suggest starting
with Miniconda.

To get started, download and install the Miniconda package—make
sure to choose a version with Python 3—and then install the
IPython notebook package:

[~]$ conda install ipython-notebook

For more information on conda, including information about creat‐
ing and using conda environments, refer to the Miniconda package
documentation linked at the above page.

The Zen of Python
Python aficionados are often quick to point out how “intuitive”,
“beautiful”, or “fun” Python is. While I tend to agree, I also recognize
that beauty, intuition, and fun often go hand in hand with familiar‐
ity, and so for those familiar with other languages such florid senti‐
ments can come across as a bit smug. Nevertheless, I hope that if
you give Python a chance, you’ll see where such impressions might
come from. And if you really want to dig into the programming phi‐
losophy that drives much of the coding practice of Python power
users, a nice little Easter egg exists in the Python interpreter—simply
close your eyes, meditate for a few minutes, and run import this:

In [1]: import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

4 | A Whirlwind Tour of Python

Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one--and preferably only one--obvious way
 to do it.
Although that way may not be obvious at first unless
 you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea--let's do more of those!

With that, let’s start our tour of the Python language.

How to Run Python Code
Python is a flexible language, and there are several ways to use it
depending on your particular task. One thing that distinguishes
Python from other programming languages is that it is interpreted
rather than compiled. This means that it is executed line by line,
which allows programming to be interactive in a way that is not
directly possible with compiled languages like Fortran, C, or Java.
This section will describe four primary ways you can run Python
code: the Python interpreter, the IPython interpreter, via self-
contained scripts, or in the Jupyter notebook.

The Python interpreter
The most basic way to execute Python code is line by line within the
Python interpreter. The Python interpreter can be started by instal‐
ling the Python language (see the previous section) and typing
python at the command prompt (look for the Terminal on Mac OS
X and Unix/Linux systems, or the Command Prompt application in
Windows):

$ python
Python 3.5.1 |Continuum Analytics, Inc.| (default, Dec 7...
Type "help", "copyright", "credits" or "license" for more...
>>>

How to Run Python Code | 5

With the interpreter running, you can begin to type and execute
code snippets. Here we’ll use the interpreter as a simple calculator,
performing calculations and assigning values to variables:

>>> 1 + 1
2
>>> x = 5
>>> x * 3
15

The interpreter makes it very convenient to try out small snippets of
Python code and to experiment with short sequences of operations.

The IPython interpreter
If you spend much time with the basic Python interpreter, you’ll
find that it lacks many of the features of a full-fledged interactive
development environment. An alternative interpreter called IPython
(for Interactive Python) is bundled with the Anaconda distribution,
and includes a host of convenient enhancements to the basic Python
interpreter. It can be started by typing ipython at the command
prompt:

$ ipython
Python 3.5.1 |Continuum Analytics, Inc.| (default, Dec 7...
Type "copyright", "credits" or "license" for more information.

IPython 4.0.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra...

In [1]:

The main aesthetic difference between the Python interpreter and
the enhanced IPython interpreter lies in the command prompt:
Python uses >>> by default, while IPython uses numbered com‐
mands (e.g., In [1]:). Regardless, we can execute code line by line
just as we did before:

In [1]: 1 + 1
Out[1]: 2

In [2]: x = 5

In [3]: x * 3
Out[3]: 15

6 | A Whirlwind Tour of Python

Note that just as the input is numbered, the output of each com‐
mand is numbered as well. IPython makes available a wide array of
useful features; for some suggestions on where to read more, see
“Resources for Further Learning” on page 90.

Self-contained Python scripts
Running Python snippets line by line is useful in some cases, but for
more complicated programs it is more convenient to save code to
file, and execute it all at once. By convention, Python scripts are
saved in files with a .py extension. For example, let’s create a script
called test.py that contains the following:

file: test.py
print("Running test.py")
x = 5
print("Result is", 3 * x)

To run this file, we make sure it is in the current directory and type
python filename at the command prompt:

$ python test.py
Running test.py
Result is 15

For more complicated programs, creating self-contained scripts like
this one is a must.

The Jupyter notebook
A useful hybrid of the interactive terminal and the self-contained
script is the Jupyter notebook, a document format that allows exe‐
cutable code, formatted text, graphics, and even interactive features
to be combined into a single document. Though the notebook began
as a Python-only format, it has since been made compatible with a
large number of programming languages, and is now an essential
part of the Jupyter Project. The notebook is useful both as a develop‐
ment environment and as a means of sharing work via rich compu‐
tational and data-driven narratives that mix together code, figures,
data, and text.

A Quick Tour of Python Language Syntax
Python was originally developed as a teaching language, but its ease
of use and clean syntax have led it to be embraced by beginners and
experts alike. The cleanliness of Python’s syntax has led some to call

A Quick Tour of Python Language Syntax | 7

it “executable pseudocode”, and indeed my own experience has been
that it is often much easier to read and understand a Python script
than to read a similar script written in, say, C. Here we’ll begin to
discuss the main features of Python’s syntax.

Syntax refers to the structure of the language (i.e., what constitutes a
correctly formed program). For the time being, we won’t focus on
the semantics—the meaning of the words and symbols within the
syntax—but will return to this at a later point.

Consider the following code example:

In [1]: # set the midpoint
 midpoint = 5

 # make two empty lists
 lower = []; upper = []

 # split the numbers into lower and upper
 for i in range(10):
 if (i < midpoint):
 lower.append(i)
 else:
 upper.append(i)

 print("lower:", lower)
 print("upper:", upper)

lower: [0, 1, 2, 3, 4]
upper: [5, 6, 7, 8, 9]

This script is a bit silly, but it compactly illustrates several of the
important aspects of Python syntax. Let’s walk through it and dis‐
cuss some of the syntactical features of Python.

Comments Are Marked by #
The script starts with a comment:

set the midpoint

Comments in Python are indicated by a pound sign (#), and any‐
thing on the line following the pound sign is ignored by the inter‐
preter. This means, for example, that you can have standalone
comments like the one just shown, as well as inline comments that
follow a statement. For example:

x += 2 # shorthand for x = x + 2

8 | A Whirlwind Tour of Python

Python does not have any syntax for multiline comments, such as
the /* ... */ syntax used in C and C++, though multiline strings
are often used as a replacement for multiline comments (more on
this in “String Manipulation and Regular Expressions” on page 69).

End-of-Line Terminates a Statement
The next line in the script is

midpoint = 5

This is an assignment operation, where we’ve created a variable
named midpoint and assigned it the value 5. Notice that the end of
this statement is simply marked by the end of the line. This is in
contrast to languages like C and C++, where every statement must
end with a semicolon (;).

In Python, if you’d like a statement to continue to the next line, it is
possible to use the \ marker to indicate this:

In [2]: x = 1 + 2 + 3 + 4 +\
 5 + 6 + 7 + 8

It is also possible to continue expressions on the next line within
parentheses, without using the \ marker:

In [3]: x = (1 + 2 + 3 + 4 +
 5 + 6 + 7 + 8)

Most Python style guides recommend the second version of line
continuation (within parentheses) to the first (use of the \ marker).

Semicolon Can Optionally Terminate a Statement
Sometimes it can be useful to put multiple statements on a single
line. The next portion of the script is:

lower = []; upper = []

This shows the example of how the semicolon (;) familiar in C can
be used optionally in Python to put two statements on a single line.
Functionally, this is entirely equivalent to writing:

lower = []
upper = []

Using a semicolon to put multiple statements on a single line is gen‐
erally discouraged by most Python style guides, though occasionally
it proves convenient.

A Quick Tour of Python Language Syntax | 9

Indentation: Whitespace Matters!
Next, we get to the main block of code:

for i in range(10):
 if i < midpoint:
 lower.append(i)
 else:
 upper.append(i)

This is a compound control-flow statement including a loop and a
conditional—we’ll look at these types of statements in a moment.
For now, consider that this demonstrates what is perhaps the most
controversial feature of Python’s syntax: whitespace is meaningful!

In programming languages, a block of code is a set of statements that
should be treated as a unit. In C, for example, code blocks are deno‐
ted by curly braces:

// C code
for(int i=0; i<100; i++)
 {
 // curly braces indicate code block
 total += i;
 }

In Python, code blocks are denoted by indentation:

for i in range(100):
 # indentation indicates code block
 total += i

In Python, indented code blocks are always preceded by a colon (:)
on the previous line.

The use of indentation helps to enforce the uniform, readable style
that many find appealing in Python code. But it might be confusing
to the uninitiated; for example, the following two snippets will pro‐
duce different results:

>>> if x < 4: >>> if x < 4:
... y = x * 2 ... y = x * 2
... print(x) ... print(x)

In the snippet on the left, print(x) is in the indented block, and will
be executed only if x is less than 4. In the snippet on the right,
print(x) is outside the block, and will be executed regardless of the
value of x!

10 | A Whirlwind Tour of Python

Python’s use of meaningful whitespace often is surprising to pro‐
grammers who are accustomed to other languages, but in practice it
can lead to much more consistent and readable code than languages
that do not enforce indentation of code blocks. If you find Python’s
use of whitespace disagreeable, I’d encourage you to give it a try: as I
did, you may find that you come to appreciate it.

Finally, you should be aware that the amount of whitespace used for
indenting code blocks is up to the user, as long as it is consistent
throughout the script. By convention, most style guides recommend
to indent code blocks by four spaces, and that is the convention we
will follow in this report. Note that many text editors like Emacs and
Vim contain Python modes that do four-space indentation automat‐
ically.

Whitespace Within Lines Does Not Matter
While the mantra of meaningful whitespace holds true for white‐
space before lines (which indicate a code block), whitespace within
lines of Python code does not matter. For example, all three of these
expressions are equivalent:

In [4]: x=1+2
 x = 1 + 2
 x = 1 + 2

Abusing this flexibility can lead to issues with code readability—in
fact, abusing whitespace is often one of the primary means of inten‐
tionally obfuscating code (which some people do for sport). Using
whitespace effectively can lead to much more readable code, espe‐
cially in cases where operators follow each other—compare the fol‐
lowing two expressions for exponentiating by a negative number:

x=10**-2

to

x = 10 ** -2

I find the second version with spaces much more easily readable at a
single glance. Most Python style guides recommend using a single
space around binary operators, and no space around unary opera‐
tors. We’ll discuss Python’s operators further in “Basic Python
Semantics: Variables and Objects” on page 13.

A Quick Tour of Python Language Syntax | 11

Parentheses Are for Grouping or Calling
In the following code snippet, we see two uses of parentheses. First,
they can be used in the typical way to group statements or mathe‐
matical operations:

In [5]: 2 * (3 + 4)

Out [5]: 14

They can also be used to indicate that a function is being called. In
the next snippet, the print() function is used to display the con‐
tents of a variable (see the sidebar that follows). The function call is
indicated by a pair of opening and closing parentheses, with the
arguments to the function contained within:

In [6]: print('first value:', 1)

first value: 1

In [7]: print('second value:', 2)

second value: 2

Some functions can be called with no arguments at all, in which case
the opening and closing parentheses still must be used to indicate a
function evaluation. An example of this is the sort method of lists:

In [8]: L = [4,2,3,1]
 L.sort()
 print(L)

 [1, 2, 3, 4]

The () after sort indicates that the function should be executed,
and is required even if no arguments are necessary.

A Note on the print() Function
The print() function is one piece that has changed between
Python 2.x and Python 3.x. In Python 2, print behaved as a state‐
ment—that is, you could write:

Python 2 only!
>> print "first value:", 1
first value: 1

For various reasons, the language maintainers decided that in
Python 3 print() should become a function, so we now write:

12 | A Whirlwind Tour of Python

Python 3 only!
>>> print("first value:", 1)
first value: 1

This is one of the many backward-incompatible constructs between
Python 2 and 3. As of the writing of this report, it is common to
find examples written in both versions of Python, and the presence
of the print statement rather than the print() function is often
one of the first signs that you’re looking at Python 2 code.

Finishing Up and Learning More
This has been a very brief exploration of the essential features of
Python syntax; its purpose is to give you a good frame of reference
for when you’re reading the code in later sections. Several times
we’ve mentioned Python “style guides,” which can help teams to
write code in a consistent style. The most widely used style guide in
Python is known as PEP8, and can be found at https://
www.python.org/dev/peps/pep-0008/. As you begin to write more
Python code, it would be useful to read through this! The style sug‐
gestions contain the wisdom of many Python gurus, and most sug‐
gestions go beyond simple pedantry: they are experience-based
recommendations that can help avoid subtle mistakes and bugs in
your code.

Basic Python Semantics: Variables and Objects
This section will begin to cover the basic semantics of the Python
language. As opposed to the syntax covered in the previous section,
the semantics of a language involve the meaning of the statements.
As with our discussion of syntax, here we’ll preview a few of the
essential semantic constructions in Python to give you a better
frame of reference for understanding the code in the following
sections.

This section will cover the semantics of variables and objects, which
are the main ways you store, reference, and operate on data within a
Python script.

Python Variables Are Pointers
Assigning variables in Python is as easy as putting a variable name
to the left of the equals sign (=):

Basic Python Semantics: Variables and Objects | 13

assign 4 to the variable x
x = 4

This may seem straightforward, but if you have the wrong mental
model of what this operation does, the way Python works may seem
confusing. We’ll briefly dig into that here.

In many programming languages, variables are best thought of as
containers or buckets into which you put data. So in C, for example,
when you write

// C code
int x = 4;

you are essentially defining a “memory bucket” named x, and
putting the value 4 into it. In Python, by contrast, variables are best
thought of not as containers but as pointers. So in Python, when you
write

x = 4

you are essentially defining a pointer named x that points to some
other bucket containing the value 4. Note one consequence of this:
because Python variables just point to various objects, there is no
need to “declare” the variable, or even require the variable to always
point to information of the same type! This is the sense in which
people say Python is dynamically typed: variable names can point to
objects of any type. So in Python, you can do things like this:

In [1]: x = 1 # x is an integer
 x = 'hello' # now x is a string
 x = [1, 2, 3] # now x is a list

While users of statically typed languages might miss the type-safety
that comes with declarations like those found in C,

int x = 4;

this dynamic typing is one of the pieces that makes Python so quick
to write and easy to read.

There is a consequence of this “variable as pointer” approach that
you need to be aware of. If we have two variable names pointing to
the same mutable object, then changing one will change the other as
well! For example, let’s create and modify a list:

In [2]: x = [1, 2, 3]
 y = x

14 | A Whirlwind Tour of Python

We’ve created two variables x and y that both point to the same
object. Because of this, if we modify the list via one of its names,
we’ll see that the “other” list will be modified as well:

In [3]: print(y)

[1, 2, 3]

In [4]: x.append(4) # append 4 to the list pointed to by x
 print(y) # y's list is modified as well!

[1, 2, 3, 4]

This behavior might seem confusing if you’re wrongly thinking of
variables as buckets that contain data. But if you’re correctly think‐
ing of variables as pointers to objects, then this behavior makes
sense.

Note also that if we use = to assign another value to x, this will not
affect the value of y—assignment is simply a change of what object
the variable points to:

In [5]: x = 'something else'
 print(y) # y is unchanged

[1, 2, 3, 4]

Again, this makes perfect sense if you think of x and y as pointers,
and the = operator as an operation that changes what the name
points to.

You might wonder whether this pointer idea makes arithmetic oper‐
ations in Python difficult to track, but Python is set up so that this is
not an issue. Numbers, strings, and other simple types are immuta‐
ble: you can’t change their value—you can only change what values
the variables point to. So, for example, it’s perfectly safe to do opera‐
tions like the following:

In [6]: x = 10
 y = x
 x += 5 # add 5 to x's value, and assign it to x
 print("x =", x)
 print("y =", y)

x = 15
y = 10

When we call x += 5, we are not modifying the value of the 5 object
pointed to by x, but rather we are changing the object to which x

Basic Python Semantics: Variables and Objects | 15

points. For this reason, the value of y is not affected by the opera‐
tion.

Everything Is an Object
Python is an object-oriented programming language, and in Python
everything is an object.

Let’s flesh out what this means. Earlier we saw that variables are sim‐
ply pointers, and the variable names themselves have no attached
type information. This leads some to claim erroneously that Python
is a type-free language. But this is not the case! Consider the follow‐
ing:

In [7]: x = 4
 type(x)

Out [7]: int

In [8]: x = 'hello'
 type(x)

Out [8]: str

In [9]: x = 3.14159
 type(x)

Out [9]: float

Python has types; however, the types are linked not to the variable
names but to the objects themselves.

In object-oriented programming languages like Python, an object is
an entity that contains data along with associated metadata and/or
functionality. In Python, everything is an object, which means every
entity has some metadata (called attributes) and associated function‐
ality (called methods). These attributes and methods are accessed via
the dot syntax.

For example, before we saw that lists have an append method, which
adds an item to the list, and is accessed via the dot syntax (.):

In [10]: L = [1, 2, 3]
 L.append(100)
 print(L)

[1, 2, 3, 100]

While it might be expected for compound objects like lists to have
attributes and methods, what is sometimes unexpected is that in
Python even simple types have attached attributes and methods. For

16 | A Whirlwind Tour of Python

example, numerical types have a real and imag attribute that return
the real and imaginary part of the value, if viewed as a complex
number:

In [11]: x = 4.5
 print(x.real, "+", x.imag, 'i')

4.5 + 0.0 i

Methods are like attributes, except they are functions that you can
call using a pair of opening and closing parentheses. For example,
floating-point numbers have a method called is_integer that
checks whether the value is an integer:

In [12]: x = 4.5
 x.is_integer()

Out [12]: False

In [13]: x = 4.0
 x.is_integer()

Out [13]: True

When we say that everything in Python is an object, we really mean
that everything is an object—even the attributes and methods of
objects are themselves objects with their own type information:

In [14]: type(x.is_integer)

Out [14]: builtin_function_or_method

We’ll find that the everything-is-object design choice of Python
allows for some very convenient language constructs.

Basic Python Semantics: Operators
In the previous section, we began to look at the semantics of Python
variables and objects; here we’ll dig into the semantics of the various
operators included in the language. By the end of this section, you’ll
have the basic tools to begin comparing and operating on data in
Python.

Arithmetic Operations
Python implements seven basic binary arithmetic operators, two of
which can double as unary operators. They are summarized in the
following table:

Basic Python Semantics: Operators | 17

Operator Name Description

a + b Addition Sum of a and b

a - b Subtraction Difference of a and b

a * b Multiplication Product of a and b

a / b True division Quotient of a and b

a // b Floor division Quotient of a and b, removing fractional parts

a % b Modulus Remainder after division of a by b

a ** b Exponentiation a raised to the power of b

-a Negation The negative of a

+a Unary plus a unchanged (rarely used)

These operators can be used and combined in intuitive ways, using
standard parentheses to group operations. For example:

In [1]: # addition, subtraction, multiplication
 (4 + 8) * (6.5 - 3)

Out [1]: 42.0

Floor division is true division with fractional parts truncated:

In [2]: # True division
 print(11 / 2)

5.5

In [3]: # Floor division
 print(11 // 2)

5

The floor division operator was added in Python 3; you should be
aware if working in Python 2 that the standard division operator (/)
acts like floor division for integers and like true division for floating-
point numbers.

Finally, I’ll mention that an eighth arithmetic operator was added in
Python 3.5: the a @ b operator, which is meant to indicate the
matrix product of a and b, for use in various linear algebra packages.

Bitwise Operations
In addition to the standard numerical operations, Python includes
operators to perform bitwise logical operations on integers. These
are much less commonly used than the standard arithmetic opera‐

18 | A Whirlwind Tour of Python

tions, but it’s useful to know that they exist. The six bitwise opera‐
tors are summarized in the following table:

Operator Name Description

a & b Bitwise AND Bits defined in both a and b

a | b Bitwise OR Bits defined in a or b or both

a ^ b Bitwise XOR Bits defined in a or b but not both

a << b Bit shift left Shift bits of a left by b units

a >> b Bit shift right Shift bits of a right by b units

~a Bitwise NOT Bitwise negation of a

These bitwise operators only make sense in terms of the binary rep‐
resentation of numbers, which you can see using the built-in bin
function:

In [4]: bin(10)

Out [4]: '0b1010'

The result is prefixed with 0b, which indicates a binary representa‐
tion. The rest of the digits indicate that the number 10 is expressed
as the sum:

1 · 23 + 0 · 22 + 1 · 21 + 0 · 20

Similarly, we can write:

In [5]: bin(4)

Out [5]: '0b100'

Now, using bitwise OR, we can find the number which combines the
bits of 4 and 10:

In [6]: 4 | 10

Out [6]: 14

In [7]: bin(4 | 10)

Out [7]: '0b1110'

These bitwise operators are not as immediately useful as the stan‐
dard arithmetic operators, but it’s helpful to see them at least once to
understand what class of operation they perform. In particular, users
from other languages are sometimes tempted to use XOR (i.e.,
a ^ b) when they really mean exponentiation (i.e., a ** b).

Basic Python Semantics: Operators | 19

Assignment Operations
We’ve seen that variables can be assigned with the = operator, and
the values stored for later use. For example:

In [8]: a = 24
 print(a)

24

We can use these variables in expressions with any of the operators
mentioned earlier. For example, to add 2 to a we write:

In [9]: a + 2

Out [9]: 26

We might want to update the variable a with this new value; in this
case, we could combine the addition and the assignment and write
a = a + 2. Because this type of combined operation and assign‐
ment is so common, Python includes built-in update operators for
all of the arithmetic operations:

In [10]: a += 2 # equivalent to a = a + 2
 print(a)

26

There is an augmented assignment operator corresponding to each
of the binary operators listed earlier; in brief, they are:

a += b a -= b a *= b a /= b

a //= b a %= b a **= b a &= b

a |= b a ^= b a <<= b a >>= b

Each one is equivalent to the corresponding operation followed by
assignment: that is, for any operator #, the expression a #= b is
equivalent to a = a # b, with a slight catch. For mutable objects like
lists, arrays, or DataFrames, these augmented assignment operations
are actually subtly different than their more verbose counterparts:
they modify the contents of the original object rather than creating a
new object to store the result.

Comparison Operations
Another type of operation that can be very useful is comparison of
different values. For this, Python implements standard comparison

20 | A Whirlwind Tour of Python

operators, which return Boolean values True and False. The com‐
parison operations are listed in the following table:

Operation Description

a == b a equal to b

a != b a not equal to b

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

These comparison operators can be combined with the arithmetic
and bitwise operators to express a virtually limitless range of tests
for the numbers. For example, we can check if a number is odd by
checking that the modulus with 2 returns 1:

In [11]: # 25 is odd
 25 % 2 == 1

Out [11]: True

In [12]: # 66 is odd
 66 % 2 == 1

Out [12]: False

We can string together multiple comparisons to check more compli‐
cated relationships:

In [13]: # check if a is between 15 and 30
 a = 25
 15 < a < 30

Out [13]: True

And, just to make your head hurt a bit, take a look at this compari‐
son:

In [14]: -1 == ~0

Out [14]: True

Recall that ~ is the bit-flip operator, and evidently when you flip all
the bits of zero you end up with –1. If you’re curious as to why this
is, look up the two’s complement integer encoding scheme, which is
what Python uses to encode signed integers, and think about hap‐
pens when you start flipping all the bits of integers encoded this way.

Basic Python Semantics: Operators | 21

Boolean Operations
When working with Boolean values, Python provides operators to
combine the values using the standard concepts of “and”, “or”, and
“not”. Predictably, these operators are expressed using the words
and, or, and not:

In [15]: x = 4
 (x < 6) and (x > 2)

Out [15]: True

In [16]: (x > 10) or (x % 2 == 0)

Out [16]: True

In [17]: not (x < 6)

Out [17]: False

Boolean algebra aficionados might notice that the XOR operator is
not included; this can of course be constructed in several ways from
a compound statement of the other operators. Otherwise, a clever
trick you can use for XOR of Boolean values is the following:

In [18]: # (x > 1) xor (x < 10)
 (x > 1) != (x < 10)

Out [18]: False

These sorts of Boolean operations will become extremely useful
when we begin discussing control flow statements such as condition‐
als and loops.

One sometimes confusing thing about the language is when to use
Boolean operators (and, or, not), and when to use bitwise opera‐
tions (&, |, ~). The answer lies in their names: Boolean operators
should be used when you want to compute Boolean values (i.e.,
truth or falsehood) of entire statements. Bitwise operations should
be used when you want to operate on individual bits or components
of the objects in question.

Identity and Membership Operators
Like and, or, and not, Python also contains prose-like operators to
check for identity and membership. They are the following:

22 | A Whirlwind Tour of Python

Operator Description

a is b True if a and b are identical objects

a is not b True if a and b are not identical objects

a in b True if a is a member of b

a not in b True if a is not a member of b

Identity operators: is and is not

The identity operators, is and is not, check for object identity.
Object identity is different than equality, as we can see here:

In [19]: a = [1, 2, 3]
 b = [1, 2, 3]

In [20]: a == b

Out [20]: True

In [21]: a is b

Out [21]: False

In [22]: a is not b

Out [22]: True

What do identical objects look like? Here is an example:

In [23]: a = [1, 2, 3]
 b = a
 a is b

Out [23]: True

The difference between the two cases here is that in the first, a and b
point to different objects, while in the second they point to the same
object. As we saw in the previous section, Python variables are
pointers. The is operator checks whether the two variables are
pointing to the same container (object), rather than referring to
what the container contains. With this in mind, in most cases that a
beginner is tempted to use is, what they really mean is ==.

Membership operators
Membership operators check for membership within compound
objects. So, for example, we can write:

In [24]: 1 in [1, 2, 3]

Out [24]: True

Basic Python Semantics: Operators | 23

In [25]: 2 not in [1, 2, 3]

Out [25]: False

These membership operations are an example of what makes
Python so easy to use compared to lower-level languages such as C.
In C, membership would generally be determined by manually con‐
structing a loop over the list and checking for equality of each value.
In Python, you just type what you want to know, in a manner remi‐
niscent of straightforward English prose.

Built-In Types: Simple Values
When discussing Python variables and objects, we mentioned the
fact that all Python objects have type information attached. Here
we’ll briefly walk through the built-in simple types offered by
Python. We say “simple types” to contrast with several compound
types, which will be discussed in the following section.

Python’s simple types are summarized in Table 1-1.

Table 1-1. Python scalar types

Type Example Description

int x = 1 Integers (i.e., whole numbers)

float x = 1.0 Floating-point numbers (i.e., real numbers)

complex x = 1 + 2j Complex numbers (i.e., numbers with a real and imaginary part)

bool x = True Boolean: True/False values

str x = 'abc' String: characters or text

NoneType x = None Special object indicating nulls

We’ll take a quick look at each of these in turn.

Integers
The most basic numerical type is the integer. Any number without a
decimal point is an integer:

In [1]: x = 1
 type(x)

Out [1]: int

Python integers are actually quite a bit more sophisticated than inte‐
gers in languages like C. C integers are fixed-precision, and usually

24 | A Whirlwind Tour of Python

overflow at some value (often near 231 or 263, depending on your sys‐
tem). Python integers are variable-precision, so you can do compu‐
tations that would overflow in other languages:

In [2]: 2 ** 200

Out [2]:
1606938044258990275541962092341162602522202993782792835301376

Another convenient feature of Python integers is that by default,
division upcasts to floating-point type:

In [3]: 5 / 2

Out [3]: 2.5

Note that this upcasting is a feature of Python 3; in Python 2, like in
many statically typed languages such as C, integer division truncates
any decimal and always returns an integer:

Python 2 behavior
>>> 5 / 2
2

To recover this behavior in Python 3, you can use the floor-division
operator:

In [4]: 5 // 2

Out [4]: 2

Finally, note that although Python 2.x had both an int and long
type, Python 3 combines the behavior of these two into a single int
type.

Floating-Point Numbers
The floating-point type can store fractional numbers. They can be
defined either in standard decimal notation, or in exponential nota‐
tion:

In [5]: x = 0.000005
 y = 5e-6
 print(x == y)

True

In [6]: x = 1400000.00
 y = 1.4e6
 print(x == y)

True

Built-In Types: Simple Values | 25

In the exponential notation, the e or E can be read “…times ten to
the…”, so that 1.4e6 is interpreted as 1.4 × 106.

An integer can be explicitly converted to a float with the float
constructor:

In [7]: float(1)

Out [7]: 1.0

Floating-point precision
One thing to be aware of with floating-point arithmetic is that its
precision is limited, which can cause equality tests to be unstable.
For example:

In [8]: 0.1 + 0.2 == 0.3

Out [8]: False

Why is this the case? It turns out that it is not a behavior unique to
Python, but is due to the fixed-precision format of the binary
floating-point storage used by most, if not all, scientific computing
platforms. All programming languages using floating-point num‐
bers store them in a fixed number of bits, and this leads some num‐
bers to be represented only approximately. We can see this by
printing the three values to high precision:

In [9]: print("0.1 = {0:.17f}".format(0.1))
 print("0.2 = {0:.17f}".format(0.2))
 print("0.3 = {0:.17f}".format(0.3))

0.1 = 0.10000000000000001
0.2 = 0.20000000000000001
0.3 = 0.29999999999999999

We’re accustomed to thinking of numbers in decimal (base-10)
notation, so that each fraction must be expressed as a sum of powers
of 10:

1/8 = 1 · 10-1 + 2 · 10-2 + 5 · 10-3

In the familiar base-10 representation, we represent this in the
familiar decimal expression: 0.125.

Computers usually store values in binary notation, so that each
number is expressed as a sum of powers of 2:

1/8 = 0 · 2-1 + 0 · 2-2 + 1 · 2-3

26 | A Whirlwind Tour of Python

In a base-2 representation, we can write this 0.0012, where the sub‐
script 2 indicates binary notation. The value 0.125 = 0.0012 happens
to be one number which both binary and decimal notation can rep‐
resent in a finite number of digits.

In the familiar base-10 representation of numbers, you are probably
familiar with numbers that can’t be expressed in a finite number of
digits. For example, dividing 1 by 3 gives, in standard decimal nota‐
tion:

1/3 = 0.333333333...

The 3s go on forever: that is, to truly represent this quotient, the
number of required digits is infinite!

Similarly, there are numbers for which binary representations
require an infinite number of digits. For example:

1/10 = 0.00011001100110011...2

Just as decimal notation requires an infinite number of digits to per‐
fectly represent 1/3, binary notation requires an infinite number of
digits to represent 1/10. Python internally truncates these represen‐
tations at 52 bits beyond the first nonzero bit on most systems.

This rounding error for floating-point values is a necessary evil of
working with floating-point numbers. The best way to deal with it is
to always keep in mind that floating-point arithmetic is approxi‐
mate, and never rely on exact equality tests with floating-point
values.

Complex Numbers
Complex numbers are numbers with real and imaginary (floating-
point) parts. We’ve seen integers and real numbers before; we can
use these to construct a complex number:

In [10]: complex(1, 2)

Out [10]: (1+2j)

Alternatively, we can use the j suffix in expressions to indicate the
imaginary part:

In [11]: 1 + 2j

Out [11]: (1+2j)

Built-In Types: Simple Values | 27

Complex numbers have a variety of interesting attributes and meth‐
ods, which we’ll briefly demonstrate here:

In [12]: c = 3 + 4j

In [13]: c.real # real part

Out [13]: 3.0

In [14]: c.imag # imaginary part

Out [14]: 4.0

In [15]: c.conjugate() # complex conjugate

Out [15]: (3-4j)

In [16]:
abs(c) # magnitude--that is, sqrt(c.real ** 2 + c.imag ** 2)

Out [16]: 5.0

String Type
Strings in Python are created with single or double quotes:

In [17]: message = "what do you like?"
 response = 'spam'

Python has many extremely useful string functions and methods;
here are a few of them:

In [18]: # length of string
 len(response)

Out [18]: 4

In [19]: # Make uppercase. See also str.lower()
 response.upper()

Out [19]: 'SPAM'

In [20]: # Capitalize. See also str.title()
 message.capitalize()

Out [20]: 'What do you like?'

In [21]: # concatenation with +
 message + response

Out [21]: 'what do you like?spam'

In [22]: # multiplication is multiple concatenation
 5 * response

Out [22]: 'spamspamspamspamspam'

28 | A Whirlwind Tour of Python

In [23]: # Access individual characters (zero-based indexing)
 message[0]

Out [23]: 'w'

For more discussion of indexing in Python, see “Lists” on page 31.

None Type
Python includes a special type, the NoneType, which has only a sin‐
gle possible value: None. For example:

In [24]: type(None)

Out [24]: NoneType

You’ll see None used in many places, but perhaps most commonly it
is used as the default return value of a function. For example, the
print() function in Python 3 does not return anything, but we can
still catch its value:

In [25]: return_value = print('abc')

abc

In [26]: print(return_value)

None

Likewise, any function in Python with no return value is, in reality,
returning None.

Boolean Type
The Boolean type is a simple type with two possible values: True and
False, and is returned by comparison operators discussed previ‐
ously:

In [27]: result = (4 < 5)
 result

Out [27]: True

In [28]: type(result)

Out [28]: bool

Keep in mind that the Boolean values are case-sensitive: unlike some
other languages, True and False must be capitalized!

In [29]: print(True, False)

True False

Built-In Types: Simple Values | 29

Booleans can also be constructed using the bool() object construc‐
tor: values of any other type can be converted to Boolean via pre‐
dictable rules. For example, any numeric type is False if equal to
zero, and True otherwise:

In [30]: bool(2014)

Out [30]: True

In [31]: bool(0)

Out [31]: False

In [32]: bool(3.1415)

Out [32]: True

The Boolean conversion of None is always False:

In [33]: bool(None)

Out [33]: False

For strings, bool(s) is False for empty strings and True otherwise:

In [34]: bool("")

Out [34]: False

In [35]: bool("abc")

Out [35]: True

For sequences, which we’ll see in the next section, the Boolean rep‐
resentation is False for empty sequences and True for any other
sequences:

In [36]: bool([1, 2, 3])

Out [36]: True

In [37]: bool([])

Out [37]: False

Built-In Data Structures
We have seen Python’s simple types: int, float, complex, bool, str,
and so on. Python also has several built-in compound types, which
act as containers for other types. These compound types are:

Type Name Example Description

list [1, 2, 3] Ordered collection

tuple (1, 2, 3) Immutable ordered collection

30 | A Whirlwind Tour of Python

Type Name Example Description

dict {'a':1, 'b':2, 'c':3} Unordered (key,value) mapping

set {1, 2, 3} Unordered collection of unique values

As you can see, round, square, and curly brackets have distinct
meanings when it comes to the type of collection produced. We’ll
take a quick tour of these data structures here.

Lists
Lists are the basic ordered and mutable data collection type in
Python. They can be defined with comma-separated values between
square brackets; here is a list of the first several prime numbers:

In [1]: L = [2, 3, 5, 7]

Lists have a number of useful properties and methods available to
them. Here we’ll take a quick look at some of the more common and
useful ones:

In [2]: # Length of a list
 len(L)

Out [2]: 4

In [3]: # Append a value to the end
 L.append(11)
 L

Out [3]: [2, 3, 5, 7, 11]

In [4]: # Addition concatenates lists
 L + [13, 17, 19]

Out [4]: [2, 3, 5, 7, 11, 13, 17, 19]

In [5]: # sort() method sorts in-place
 L = [2, 5, 1, 6, 3, 4]
 L.sort()
 L

Out [5]: [1, 2, 3, 4, 5, 6]

In addition, there are many more built-in list methods; they are
well-covered in Python’s online documentation.

While we’ve been demonstrating lists containing values of a single
type, one of the powerful features of Python’s compound objects is
that they can contain objects of any type, or even a mix of types. For
example:

Built-In Data Structures | 31

In [6]: L = [1, 'two', 3.14, [0, 3, 5]]

This flexibility is a consequence of Python’s dynamic type system.
Creating such a mixed sequence in a statically typed language like C
can be much more of a headache! We see that lists can even contain
other lists as elements. Such type flexibility is an essential piece of
what makes Python code relatively quick and easy to write.

So far we’ve been considering manipulations of lists as a whole;
another essential piece is the accessing of individual elements. This
is done in Python via indexing and slicing, which we’ll explore next.

List indexing and slicing
Python provides access to elements in compound types through
indexing for single elements, and slicing for multiple elements. As
we’ll see, both are indicated by a square-bracket syntax. Suppose we
return to our list of the first several primes:

In [7]: L = [2, 3, 5, 7, 11]

Python uses zero-based indexing, so we can access the first and sec‐
ond element in using the following syntax:

In [8]: L[0]

Out [8]: 2

In [9]: L[1]

Out [9]: 3

Elements at the end of the list can be accessed with negative num‐
bers, starting from -1:

In [10]: L[-1]

Out [10]: 11

In [12]: L[-2]

Out [12]: 7

You can visualize this indexing scheme this way:

32 | A Whirlwind Tour of Python

Here values in the list are represented by large numbers in the
squares; list indices are represented by small numbers above and
below. In this case, L[2] returns 5, because that is the next value at
index 2.

Where indexing is a means of fetching a single value from the list,
slicing is a means of accessing multiple values in sublists. It uses a
colon to indicate the start point (inclusive) and end point (non-
inclusive) of the subarray. For example, to get the first three ele‐
ments of the list, we can write it as follows:

In [12]: L[0:3]

Out [12]: [2, 3, 5]

Notice where 0 and 3 lie in the preceding diagram, and how the slice
takes just the values between the indices. If we leave out the first
index, 0 is assumed, so we can equivalently write the following:

In [13]: L[:3]

Out [13]: [2, 3, 5]

Similarly, if we leave out the last index, it defaults to the length of the
list. Thus, the last three elements can be accessed as follows:

In [14]: L[-3:]

Out [14]: [5, 7, 11]

Finally, it is possible to specify a third integer that represents the
step size; for example, to select every second element of the list, we
can write:

In [15]: L[::2] # equivalent to L[0:len(L):2]

Out [15]: [2, 5, 11]

A particularly useful version of this is to specify a negative step,
which will reverse the array:

In [16]: L[::-1]

Out [16]: [11, 7, 5, 3, 2]

Both indexing and slicing can be used to set elements as well as
access them. The syntax is as you would expect:

In [17]: L[0] = 100
 print(L)

[100, 3, 5, 7, 11]

Built-In Data Structures | 33

In [18]: L[1:3] = [55, 56]
 print(L)

[100, 55, 56, 7, 11]

A very similar slicing syntax is also used in many data science–ori‐
ented packages, including NumPy and Pandas (mentioned in the
introduction).

Now that we have seen Python lists and how to access elements in
ordered compound types, let’s take a look at the other three standard
compound data types mentioned earlier.

Tuples
Tuples are in many ways similar to lists, but they are defined with
parentheses rather than square brackets:

In [19]: t = (1, 2, 3)

They can also be defined without any brackets at all:

In [20]: t = 1, 2, 3
 print(t)

(1, 2, 3)

Like the lists discussed before, tuples have a length, and individual
elements can be extracted using square-bracket indexing:

In [21]: len(t)

Out [21]: 3

In [22]: t[0]

Out [22]: 1

The main distinguishing feature of tuples is that they are immutable:
this means that once they are created, their size and contents cannot
be changed:

In [23]: t[1] = 4

TypeError Traceback (most recent call last)

<ipython-input-23-141c76cb54a2> in <module>()
----> 1 t[1] = 4

TypeError: 'tuple' object does not support item assignment

34 | A Whirlwind Tour of Python

In [24]: t.append(4)

AttributeError Traceback (most recent call last)

<ipython-input-24-e8bd1632f9dd> in <module>()
----> 1 t.append(4)

AttributeError: 'tuple' object has no attribute 'append'

Tuples are often used in a Python program; a particularly common
case is in functions that have multiple return values. For example,
the as_integer_ratio() method of floating-point objects returns a
numerator and a denominator; this dual return value comes in the
form of a tuple:

In [25]: x = 0.125
 x.as_integer_ratio()

Out [25]: (1, 8)

These multiple return values can be individually assigned as follows:

In [26]: numerator, denominator = x.as_integer_ratio()
 print(numerator / denominator)

0.125

The indexing and slicing logic covered earlier for lists works for
tuples as well, along with a host of other methods. Refer to the Data
Structures documentation for a more complete list of these.

Dictionaries
Dictionaries are extremely flexible mappings of keys to values, and
form the basis of much of Python’s internal implementation. They
can be created via a comma-separated list of key:value pairs within
curly braces:

In [27]: numbers = {'one':1, 'two':2, 'three':3}

Items are accessed and set via the indexing syntax used for lists and
tuples, except here the index is not a zero-based order but valid key
in the dictionary:

In [28]: # Access a value via the key
 numbers['two']

Out [28]: 2

Built-In Data Structures | 35

New items can be added to the dictionary using indexing as well:

In [29]: # Set a new key/value pair
 numbers['ninety'] = 90
 print(numbers)

{'three': 3, 'ninety': 90, 'two': 2, 'one': 1}

Keep in mind that dictionaries do not maintain any sense of order
for the input parameters; this is by design. This lack of ordering
allows dictionaries to be implemented very efficiently, so that ran‐
dom element access is very fast, regardless of the size of the dictio‐
nary (if you’re curious how this works, read about the concept of a
hash table). The Python documentation has a complete list of the
methods available for dictionaries.

Sets
The fourth basic collection is the set, which contains unordered col‐
lections of unique items. They are defined much like lists and tuples,
except they use the curly brackets of dictionaries:

In [30]: primes = {2, 3, 5, 7}
 odds = {1, 3, 5, 7, 9}

If you’re familiar with the mathematics of sets, you’ll be familiar
with operations like the union, intersection, difference, symmetric
difference, and others. Python’s sets have all of these operations built
in via methods or operators. For each, we’ll show the two equivalent
methods:

In [31]: # union: items appearing in either
 primes | odds # with an operator
 primes.union(odds) # equivalently with a method

Out [31]: {1, 2, 3, 5, 7, 9}

In [32]: # intersection: items appearing in both
 primes & odds # with an operator
 primes.intersection(odds) # equivalently with a method

Out [32]: {3, 5, 7}

In [33]: # difference: items in primes but not in odds
 primes - odds # with an operator
 primes.difference(odds) # equivalently with a method

Out [33]: {2}

36 | A Whirlwind Tour of Python

In [34]:
symmetric difference: items appearing in only one set
primes ^ odds # with an operator
primes.symmetric_difference(odds) # equivalently with a method

Out [34]: {1, 2, 9}

Many more set methods and operations are available. You’ve proba‐
bly already guessed what I’ll say next: refer to Python’s online docu‐
mentation for a complete reference.

More Specialized Data Structures
Python contains several other data structures that you might find
useful; these can generally be found in the built-in collections
module. The collections module is fully documented in Python’s
online documentation, and you can read more about the various
objects available there.

In particular, I’ve found the following very useful on occasion:

collections.namedtuple

Like a tuple, but each value has a name

collections.defaultdict

Like a dictionary, but unspecified keys have a user-specified
default value

collections.OrderedDict

Like a dictionary, but the order of keys is maintained

Once you’ve seen the standard built-in collection types, the use of
these extended functionalities is very intuitive, and I’d suggest read‐
ing about their use.

Control Flow
Control flow is where the rubber really meets the road in program‐
ming. Without it, a program is simply a list of statements that are
sequentially executed. With control flow, you can execute certain
code blocks conditionally and/or repeatedly: these basic building
blocks can be combined to create surprisingly sophisticated pro‐
grams!

Control Flow | 37

Here we’ll cover conditional statements (including if, elif, and
else) and loop statements (including for and while, and the
accompanying break, continue, and pass).

Conditional Statements: if, elif, and else
Conditional statements, often referred to as if-then statements, allow
the programmer to execute certain pieces of code depending on
some Boolean condition. A basic example of a Python conditional
statement is this:

In [1]: x = -15

 if x == 0:
 print(x, "is zero")
 elif x > 0:
 print(x, "is positive")
 elif x < 0:
 print(x, "is negative")
 else:
 print(x, "is unlike anything I've ever seen...")

-15 is negative

Note especially the use of colons (:) and whitespace to denote sepa‐
rate blocks of code.

Python adopts the if and else often used in other languages; its
more unique keyword is elif, a contraction of “else if ”. In these
conditional clauses, elif and else blocks are optional; additionally,
you can optionally include as few or as many elif statements as you
would like.

for loops
Loops in Python are a way to repeatedly execute some code state‐
ment. So, for example, if we’d like to print each of the items in a list,
we can use a for loop:

In [2]: for N in [2, 3, 5, 7]:
 print(N, end=' ') # print all on same line

2 3 5 7

Notice the simplicity of the for loop: we specify the variable we
want to use, the sequence we want to loop over, and use the in oper‐
ator to link them together in an intuitive and readable way. More
precisely, the object to the right of the in can be any Python iterator.

38 | A Whirlwind Tour of Python

An iterator can be thought of as a generalized sequence, and we’ll
discuss them in “Iterators” on page 52.

For example, one of the most commonly used iterators in Python is
the range object, which generates a sequence of numbers:

In [3]: for i in range(10):
 print(i, end=' ')

0 1 2 3 4 5 6 7 8 9

Note that the range starts at zero by default, and that by convention
the top of the range is not included in the output. Range objects can
also have more complicated values:

In [4]: # range from 5 to 10
 list(range(5, 10))

Out [4]: [5, 6, 7, 8, 9]

In [5]: # range from 0 to 10 by 2
 list(range(0, 10, 2))

Out [5]: [0, 2, 4, 6, 8]

You might notice that the meaning of range arguments is very simi‐
lar to the slicing syntax that we covered in “Lists” on page 31.

Note that the behavior of range() is one of the differences between
Python 2 and Python 3: in Python 2, range() produces a list, while
in Python 3, range() produces an iterable object.

while loops
The other type of loop in Python is a while loop, which iterates until
some condition is met:

In [6]: i = 0
 while i < 10:
 print(i, end=' ')
 i += 1

0 1 2 3 4 5 6 7 8 9

The argument of the while loop is evaluated as a Boolean statement,
and the loop is executed until the statement evaluates to False.

break and continue: Fine-Tuning Your Loops
There are two useful statements that can be used within loops to
fine-tune how they are executed:

Control Flow | 39

• The break statement breaks out of the loop entirely
• The continue statement skips the remainder of the current

loop, and goes to the next iteration

These can be used in both for and while loops.

Here is an example of using continue to print a string of even num‐
bers. In this case, the result could be accomplished just as well with
an if-else statement, but sometimes the continue statement can
be a more convenient way to express the idea you have in mind:

In [7]: for n in range(20):
 # check if n is even
 if n % 2 == 0:
 continue
 print(n, end=' ')

1 3 5 7 9 11 13 15 17 19

Here is an example of a break statement used for a less trivial task.
This loop will fill a list with all Fibonacci numbers up to a certain
value:

In [8]: a, b = 0, 1
 amax = 100
 L = []

 while True:
 (a, b) = (b, a + b)
 if a > amax:
 break
 L.append(a)

 print(L)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Notice that we use a while True loop, which will loop forever unless
we have a break statement!

Loops with an else Block
One rarely used pattern available in Python is the else statement as
part of a for or while loop. We discussed the else block earlier: it
executes if all the if and elif statements evaluate to False. The
loop-else is perhaps one of the more confusingly named statements
in Python; I prefer to think of it as a nobreak statement: that is, the

40 | A Whirlwind Tour of Python

else block is executed only if the loop ends naturally, without
encountering a break statement.

As an example of where this might be useful, consider the following
(non-optimized) implementation of the Sieve of Eratosthenes, a well-
known algorithm for finding prime numbers:

In [9]: L = []
 nmax = 30

 for n in range(2, nmax):
 for factor in L:
 if n % factor == 0:
 break
 else: # no break
 L.append(n)
 print(L)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

The else statement only executes if none of the factors divide the
given number. The else statement works similarly with the while
loop.

Defining and Using Functions
So far, our scripts have been simple, single-use code blocks. One way
to organize our Python code and to make it more readable and reus‐
able is to factor-out useful pieces into reusable functions. Here we’ll
cover two ways of creating functions: the def statement, useful for
any type of function, and the lambda statement, useful for creating
short anonymous functions.

Using Functions
Functions are groups of code that have a name and can be called
using parentheses. We’ve seen functions before. For example, print
in Python 3 is a function:

In [1]: print('abc')

abc

Here print is the function name, and 'abc' is the function’s argu‐
ment.

In addition to arguments, there are keyword arguments that are
specified by name. One available keyword argument for the print()

Defining and Using Functions | 41

function (in Python 3) is sep, which tells what character or charac‐
ters should be used to separate multiple items:

In [2]: print(1, 2, 3)

1 2 3

In [3]: print(1, 2, 3, sep='--')

1--2--3

When non-keyword arguments are used together with keyword
arguments, the keyword arguments must come at the end.

Defining Functions
Functions become even more useful when we begin to define our
own, organizing functionality to be used in multiple places. In
Python, functions are defined with the def statement. For example,
we can encapsulate a version of our Fibonacci sequence code from
the previous section as follows:

In [4]: def fibonacci(N):
 L = []
 a, b = 0, 1
 while len(L) < N:
 a, b = b, a + b
 L.append(a)
 return L

Now we have a function named fibonacci which takes a single
argument N, does something with this argument, and returns a
value; in this case, a list of the first N Fibonacci numbers:

In [5]: fibonacci(10)

Out [5]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

If you’re familiar with strongly typed languages like C, you’ll imme‐
diately notice that there is no type information associated with the
function inputs or outputs. Python functions can return any Python
object, simple or compound, which means constructs that may be
difficult in other languages are straightforward in Python.

For example, multiple return values are simply put in a tuple, which
is indicated by commas:

In [6]: def real_imag_conj(val):
 return val.real, val.imag, val.conjugate()

42 | A Whirlwind Tour of Python

 r, i, c = real_imag_conj(3 + 4j)
 print(r, i, c)

3.0 4.0 (3-4j)

Default Argument Values
Often when defining a function, there are certain values that we
want the function to use most of the time, but we’d also like to give
the user some flexibility. In this case, we can use default values for
arguments. Consider the fibonacci function from before. What if
we would like the user to be able to play with the starting values? We
could do that as follows:

In [7]: def fibonacci(N, a=0, b=1):
 L = []
 while len(L) < N:
 a, b = b, a + b
 L.append(a)
 return L

With a single argument, the result of the function call is identical to
before:

In [8]: fibonacci(10)

Out [8]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

But now we can use the function to explore new things, such as the
effect of new starting values:

In [9]: fibonacci(10, 0, 2)

Out [9]: [2, 2, 4, 6, 10, 16, 26, 42, 68, 110]

The values can also be specified by name if desired, in which case
the order of the named values does not matter:

In [10]: fibonacci(10, b=3, a=1)

Out [10]: [3, 4, 7, 11, 18, 29, 47, 76, 123, 199]

*args and **kwargs: Flexible Arguments
Sometimes you might wish to write a function in which you don’t
initially know how many arguments the user will pass. In this case,
you can use the special form *args and **kwargs to catch all argu‐
ments that are passed. Here is an example:

In [11]: def catch_all(*args, **kwargs):
 print("args =", args)
 print("kwargs = ", kwargs)

Defining and Using Functions | 43

In [12]: catch_all(1, 2, 3, a=4, b=5)

 args = (1, 2, 3)
 kwargs = {'a': 4, 'b': 5}

In [13]: catch_all('a', keyword=2)

 args = ('a',)
 kwargs = {'keyword': 2}

Here it is not the names args and kwargs that are important, but the
* characters preceding them. args and kwargs are just the variable
names often used by convention, short for “arguments” and “key‐
word arguments”. The operative difference is the asterisk characters:
a single * before a variable means “expand this as a sequence”, while
a double ** before a variable means “expand this as a dictionary”. In
fact, this syntax can be used not only with the function definition,
but with the function call as well!

In [14]: inputs = (1, 2, 3)
 keywords = {'pi': 3.14}

 catch_all(*inputs, **keywords)

 args = (1, 2, 3)
 kwargs = {'pi': 3.14}

Anonymous (lambda) Functions
Earlier we quickly covered the most common way of defining func‐
tions, the def statement. You’ll likely come across another way of
defining short, one-off functions with the lambda statement. It looks
something like this:

In [15]: add = lambda x, y: x + y
 add(1, 2)

Out [15]: 3

This lambda function is roughly equivalent to

In [16]: def add(x, y):
 return x + y

So why would you ever want to use such a thing? Primarily, it comes
down to the fact that everything is an object in Python, even func‐
tions themselves! That means that functions can be passed as argu‐
ments to functions.

As an example of this, suppose we have some data stored in a list of
dictionaries:

44 | A Whirlwind Tour of Python

In [17]:
data = [{'first':'Guido', 'last':'Van Rossum', 'YOB':1956},
 {'first':'Grace', 'last':'Hopper', 'YOB':1906},
 {'first':'Alan', 'last':'Turing', 'YOB':1912}]

Now suppose we want to sort this data. Python has a sorted func‐
tion that does this:

In [18]: sorted([2,4,3,5,1,6])

Out [18]: [1, 2, 3, 4, 5, 6]

But dictionaries are not orderable: we need a way to tell the function
how to sort our data. We can do this by specifying the key function,
a function which given an item returns the sorting key for that item:

In [19]: # sort alphabetically by first name
 sorted(data, key=lambda item: item['first'])

Out [19]:
[{'YOB': 1912, 'first': 'Alan', 'last': 'Turing'},
 {'YOB': 1906, 'first': 'Grace', 'last': 'Hopper'},
 {'YOB': 1956, 'first': 'Guido', 'last': 'Van Rossum'}]

In [20]: # sort by year of birth
 sorted(data, key=lambda item: item['YOB'])

Out [20]:
[{'YOB': 1906, 'first': 'Grace', 'last': 'Hopper'},
 {'YOB': 1912, 'first': 'Alan', 'last': 'Turing'},
 {'YOB': 1956, 'first': 'Guido', 'last': 'Van Rossum'}]

While these key functions could certainly be created by the normal,
def syntax, the lambda syntax is convenient for such short one-off
functions like these.

Errors and Exceptions
No matter your skill as a programmer, you will eventually make a
coding mistake. Such mistakes come in three basic flavors:

Syntax errors
Errors where the code is not valid Python (generally easy to fix)

Runtime errors
Errors where syntactically valid code fails to execute, perhaps
due to invalid user input (sometimes easy to fix)

Semantic errors
Errors in logic: code executes without a problem, but the result
is not what you expect (often very difficult to identify and fix)

Errors and Exceptions | 45

Here we’re going to focus on how to deal cleanly with runtime
errors. As we’ll see, Python handles runtime errors via its exception
handling framework.

Runtime Errors
If you’ve done any coding in Python, you’ve likely come across run‐
time errors. They can happen in a lot of ways.

For example, if you try to reference an undefined variable:

In [1]: print(Q)

NameError Traceback (most recent call last)

<ipython-input-3-e796bdcf24ff> in <module>()
----> 1 print(Q)

NameError: name 'Q' is not defined

Or if you try an operation that’s not defined:

In [2]: 1 + 'abc'

TypeError Traceback (most recent call last)

<ipython-input-4-aab9e8ede4f7> in <module>()
----> 1 1 + 'abc'

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Or you might be trying to compute a mathematically ill-defined
result:

In [3]: 2 / 0

ZeroDivisionError Traceback (most recent call last)

<ipython-input-5-ae0c5d243292> in <module>()
----> 1 2 / 0

ZeroDivisionError: division by zero

46 | A Whirlwind Tour of Python

Or maybe you’re trying to access a sequence element that doesn’t
exist:

In [4]: L = [1, 2, 3]
 L[1000]

IndexError Traceback (most recent call last)

<ipython-input-6-06b6eb1b8957> in <module>()
 1 L = [1, 2, 3]
----> 2 L[1000]

IndexError: list index out of range

Note that in each case, Python is kind enough to not simply indicate
that an error happened, but to spit out a meaningful exception that
includes information about what exactly went wrong, along with the
exact line of code where the error happened. Having access to mean‐
ingful errors like this is immensely useful when trying to trace the
root of problems in your code.

Catching Exceptions: try and except
The main tool Python gives you for handling runtime exceptions is
the try…except clause. Its basic structure is this:

In [5]:
try:
 print("this gets executed first")
except:
 print("this gets executed only if there is an error")

this gets executed first

Note that the second block here did not get executed: this is because
the first block did not return an error. Let’s put a problematic state‐
ment in the try block and see what happens:

In [6]: try:
 print("let's try something:")
 x = 1 / 0 # ZeroDivisionError
 except:
 print("something bad happened!")

 let's try something:
 something bad happened!

Errors and Exceptions | 47

Here we see that when the error was raised in the try statement (in
this case, a ZeroDivisionError), the error was caught, and the
except statement was executed.

One way this is often used is to check user input within a function
or another piece of code. For example, we might wish to have a
function that catches zero-division and returns some other value,
perhaps a suitably large number like 10100:

In [7]: def safe_divide(a, b):
 try:
 return a / b
 except:
 return 1E100

In [8]: safe_divide(1, 2)

Out [8]: 0.5

In [9]: safe_divide(2, 0)

Out [9]: 1e+100

There is a subtle problem with this code, though: what happens
when another type of exception comes up? For example, this is
probably not what we intended:

In [10]: safe_divide (1, '2')

Out [10]: 1e+100

Dividing an integer and a string raises a TypeError, which our over-
zealous code caught and assumed was a ZeroDivisionError! For
this reason, it’s nearly always a better idea to catch exceptions
explicitly:

In [11]: def safe_divide(a, b):
 try:
 return a / b
 except ZeroDivisionError:
 return 1E100

In [12]: safe_divide(1, 0)

Out [12]: 1e+100

In [13]: safe_divide(1, '2')

TypeError Traceback (most recent call last)

<ipython-input-15-2331af6a0acf> in <module>()
----> 1 safe_divide(1, '2')

48 | A Whirlwind Tour of Python

<ipython-input-13-10b5f0163af8> in safe_divide(a, b)
 1 def safe_divide(a, b):
 2 try:
----> 3 return a / b
 4 except ZeroDivisionError:
 5 return 1E100

TypeError: unsupported operand type(s) for /: 'int' and 'str'

We’re now catching zero-division errors only, and letting all other
errors pass through unmodified.

Raising Exceptions: raise
We’ve seen how valuable it is to have informative exceptions when
using parts of the Python language. It’s equally valuable to make use
of informative exceptions within the code you write, so that users of
your code (foremost yourself!) can figure out what caused their
errors.

The way you raise your own exceptions is with the raise statement.
For example:

In [14]: raise RuntimeError("my error message")

RuntimeError Traceback (most recent call last)

<ipython-input-16-c6a4c1ed2f34> in <module>()
----> 1 raise RuntimeError("my error message")

RuntimeError: my error message

As an example of where this might be useful, let’s return to the
fibonacci function that we defined previously:

In [15]: def fibonacci(N):
 L = []
 a, b = 0, 1
 while len(L) < N:
 a, b = b, a + b
 L.append(a)
 return L

Errors and Exceptions | 49

One potential problem here is that the input value could be negative.
This will not currently cause any error in our function, but we might
want to let the user know that a negative N is not supported. Errors
stemming from invalid parameter values, by convention, lead to a
ValueError being raised:

In [16]: def fibonacci(N):
 if N < 0:
 raise ValueError("N must be non-negative")
 L = []
 a, b = 0, 1
 while len(L) < N:
 a, b = b, a + b
 L.append(a)
 return L

In [17]: fibonacci(10)

Out [17]: [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In [18]: fibonacci(-10)

RuntimeError Traceback (most recent call last)

<ipython-input-20-3d291499cfa7> in <module>()
----> 1 fibonacci(-10)

<ipython-input-18-01d0cf168d63> in fibonacci(N)
 1 def fibonacci(N):
 2 if N < 0:
----> 3 raise ValueError("N must be non-negative")
 4 L = []
 5 a, b = 0, 1

ValueError: N must be non-negative

Now the user knows exactly why the input is invalid, and could even
use a try…except block to handle it!

In [19]: N = -10
 try:
 print("trying this...")
 print(fibonacci(N))
 except ValueError:
 print("Bad value: need to do something else")

 trying this...
 Bad value: need to do something else

50 | A Whirlwind Tour of Python

Diving Deeper into Exceptions
Briefly, I want to mention here some other concepts you might run
into. I’ll not go into detail on these concepts and how and why to
use them, but instead simply show you the syntax so you can
explore more on your own.

Accessing the error message

Sometimes in a try…except statement, you would like to be able to
work with the error message itself. This can be done with the as
keyword:

In [20]: try:
 x = 1 / 0
 except ZeroDivisionError as err:
 print("Error class is: ", type(err))
 print("Error message is:", err)

 Error class is: <class 'ZeroDivisionError'>
 Error message is: division by zero

With this pattern, you can further customize the exception handling
of your function.

Defining custom exceptions
In addition to built-in exceptions, it is possible to define custom
exceptions through class inheritance. For instance, if you want a spe‐
cial kind of ValueError, you can do this:

In [21]: class MySpecialError(ValueError):
 pass

 raise MySpecialError("here's the message")

MySpecialError Traceback (most recent call last)

<ipython-input-23-92c36e04a9d0> in <module>()
 2 pass
 3
----> 4 raise MySpecialError("here's the message")

MySpecialError: here's the message

This would allow you to use a try…except block that only catches
this type of error:

Errors and Exceptions | 51

In [22]:
try:
 print("do something")
 raise MySpecialError("[informative error message here]")
except MySpecialError:
 print("do something else")

do something
do something else

You might find this useful as you develop more customized code.

try…except…else…finally
In addition to try and except, you can use the else and finally
keywords to further tune your code’s handling of exceptions. The
basic structure is this:

In [23]: try:
 print("try something here")
 except:
 print("this happens only if it fails")
 else:
 print("this happens only if it succeeds")
 finally:
 print("this happens no matter what")

try something here
this happens only if it succeeds
this happens no matter what

The utility of else here is clear, but what’s the point of finally?
Well, the finally clause really is executed no matter what: I usually
see it used to do some sort of cleanup after an operation completes.

Iterators
Often an important piece of data analysis is repeating a similar cal‐
culation, over and over, in an automated fashion. For example, you
may have a table of names that you’d like to split into first and last,
or perhaps of dates that you’d like to convert to some standard for‐
mat. One of Python’s answers to this is the iterator syntax. We’ve
seen this already with the range iterator:

In [1]: for i in range(10):
 print(i, end=' ')

0 1 2 3 4 5 6 7 8 9

52 | A Whirlwind Tour of Python

Here we’re going to dig a bit deeper. It turns out that in Python 3,
range is not a list, but is something called an iterator, and learning
how it works is key to understanding a wide class of very useful
Python functionality.

Iterating over lists
Iterators are perhaps most easily understood in the concrete case of
iterating through a list. Consider the following:

In [2]: for value in [2, 4, 6, 8, 10]:
 # do some operation
 print(value + 1, end=' ')

3 5 7 9 11

The familiar for x in y syntax allows us to repeat some operation
for each value in the list. The fact that the syntax of the code is so
close to its English description (for [each] value in [the] list) is just
one of the syntactic choices that makes Python such an intuitive lan‐
guage to learn and use.

But the face-value behavior is not what’s really happening. When
you write something like for val in L, the Python interpreter
checks whether it has an iterator interface, which you can check
yourself with the built-in iter function:

In [3]: iter([2, 4, 6, 8, 10])

Out [3]: <list_iterator at 0x104722400>

It is this iterator object that provides the functionality required by
the for loop. The iter object is a container that gives you access to
the next object for as long as it’s valid, which can be seen with the
built-in function next:

In [4]: I = iter([2, 4, 6, 8, 10])

In [5]: print(next(I))

2

In [6]: print(next(I))

4

In [7]: print(next(I))

6

Iterators | 53

What is the purpose of this level of indirection? Well, it turns out
this is incredibly useful, because it allows Python to treat things as
lists that are not actually lists.

range(): A List Is Not Always a List
Perhaps the most common example of this indirect iteration is the
range() function in Python 3 (named xrange() in Python 2), which
returns not a list, but a special range() object:

In [8]: range(10)

Out [8]: range(0, 10)

range, like a list, exposes an iterator:

In [9]: iter(range(10))

Out [9]: <range_iterator at 0x1045a1810>

So Python knows to treat it as if it’s a list:

In [10]: for i in range(10):
 print(i, end=' ')

0 1 2 3 4 5 6 7 8 9

The benefit of the iterator indirection is that the full list is never
explicitly created! We can see this by doing a range calculation that
would overwhelm our system memory if we actually instantiated it
(note that in Python 2, range creates a list, so running the following
will not lead to good things!):

In [11]: N = 10 ** 12
 for i in range(N):
 if i >= 10: break
 print(i, end=', ')

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

If range were to actually create that list of one trillion values, it
would occupy tens of terabytes of machine memory: a waste, given
the fact that we’re ignoring all but the first 10 values!

In fact, there’s no reason that iterators ever have to end at all!
Python’s itertools library contains a count function that acts as an
infinite range:

54 | A Whirlwind Tour of Python

In [12]: from itertools import count

 for i in count():
 if i >= 10:
 break
 print(i, end=', ')

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

Had we not thrown in a loop break here, it would go on happily
counting until the process is manually interrupted or killed (using,
for example, ctrl-C).

Useful Iterators
This iterator syntax is used nearly universally in Python built-in
types as well as the more data science–specific object we’ll explore in
later sections. Here we’ll cover some of the more useful iterators in
the Python language.

enumerate
Often you need to iterate not only the values in an array, but also
keep track of the index. You might be tempted to do things this way:

In [13]: L = [2, 4, 6, 8, 10]
 for i in range(len(L)):
 print(i, L[i])

0 2
1 4
2 6
3 8
4 10

Although this does work, Python provides a cleaner syntax using the
enumerate iterator:

In [14]: for i, val in enumerate(L):
 print(i, val)

0 2
1 4
2 6
3 8
4 10

This is the more “Pythonic” way to enumerate the indices and values
in a list.

Iterators | 55

zip
Other times, you may have multiple lists that you want to iterate
over simultaneously. You could certainly iterate over the index as in
the non-Pythonic example we looked at previously, but it is better to
use the zip iterator, which zips together iterables:

In [15]: L = [2, 4, 6, 8, 10]
 R = [3, 6, 9, 12, 15]
 for lval, rval in zip(L, R):
 print(lval, rval)

2 3
4 6
6 9
8 12
10 15

Any number of iterables can be zipped together, and if they are dif‐
ferent lengths, the shortest will determine the length of the zip.

map and filter

The map iterator takes a function and applies it to the values in an
iterator:

In [16]: # find the first 10 square numbers
 square = lambda x: x ** 2
 for val in map(square, range(10)):
 print(val, end=' ')

0 1 4 9 16 25 36 49 64 81

The filter iterator looks similar, except it only passes through val‐
ues for which the filter function evaluates to True:

In [17]: # find values up to 10 for which x % 2 is zero
 is_even = lambda x: x % 2 == 0
 for val in filter(is_even, range(10)):
 print(val, end=' ')

0 2 4 6 8

The map and filter functions, along with the reduce function
(which lives in Python’s functools module) are fundamental com‐
ponents of the functional programming style, which, while not a
dominant programming style in the Python world, has its outspo‐
ken proponents (see, for example, the pytoolz library).

56 | A Whirlwind Tour of Python

Iterators as function arguments
We saw in “*args and **kwargs: Flexible Arguments” on page 43 that
*args and **kwargs can be used to pass sequences and dictionaries
to functions. It turns out that the *args syntax works not just with
sequences, but with any iterator:

In [18]: print(*range(10))

0 1 2 3 4 5 6 7 8 9

So, for example, we can get tricky and compress the map example
from before into the following:

In [19]: print(*map(lambda x: x ** 2, range(10)))

0 1 4 9 16 25 36 49 64 81

Using this trick lets us answer the age-old question that comes up in
Python learners’ forums: why is there no unzip() function that does
the opposite of zip()? If you lock yourself in a dark closet and think
about it for a while, you might realize that the opposite of zip() is…
zip()! The key is that zip() can zip together any number of itera‐
tors or sequences. Observe:

In [20]: L1 = (1, 2, 3, 4)
 L2 = ('a', 'b', 'c', 'd')

In [21]: z = zip(L1, L2)
 print(*z)

(1, 'a') (2, 'b') (3, 'c') (4, 'd')

In [22]: z = zip(L1, L2)
 new_L1, new_L2 = zip(*z)
 print(new_L1, new_L2)

(1, 2, 3, 4) ('a', 'b', 'c', 'd')

Ponder this for a while. If you understand why it works, you’ll have
come a long way in understanding Python iterators!

Specialized Iterators: itertools
We briefly looked at the infinite range iterator, itertools.count,
earlier. The itertools module contains a whole host of useful itera‐
tors; it’s well worth your while to explore the module to see what’s
available. As an example, consider the itertools.permutations
function, which iterates over all permutations of a sequence:

Iterators | 57

In [23]: from itertools import permutations
 p = permutations(range(3))
 print(*p)

(0, 1, 2) (0, 2, 1) (1, 0, 2) (1, 2, 0) (2, 0, 1) (2, 1, 0)

Similarly, the itertools.combinations function iterates over all
unique combinations of N values within a list:

In [24]: from itertools import combinations
 c = combinations(range(4), 2)
 print(*c)

(0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3)

Somewhat related is the product iterator, which iterates over all sets
of pairs between two or more iterables:

In [25]: from itertools import product
 p = product('ab', range(3))
 print(*p)

('a', 0) ('a', 1) ('a', 2) ('b', 0) ('b', 1) ('b', 2)

Many more useful iterators exist in itertools: the full list can be
found, along with some examples, in Python’s online documenta‐
tion.

List Comprehensions
If you read enough Python code, you’ll eventually come across the
terse and efficient construction known as a list comprehension. This
is one feature of Python I expect you will fall in love with if you’ve
not used it before; it looks something like this:

In [1]: [i for i in range(20) if i % 3 > 0]

Out [1]: [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

The result of this is a list of numbers that excludes multiples of 3.
While this example may seem a bit confusing at first, as familiarity
with Python grows, reading and writing list comprehensions will
become second nature.

Basic List Comprehensions
List comprehensions are simply a way to compress a list-building
for loop into a single short, readable line. For example, here is a
loop that constructs a list of the first 12 square integers:

58 | A Whirlwind Tour of Python

In [2]: L = []
 for n in range(12):
 L.append(n ** 2)
 L

Out [2]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

The list comprehension equivalent of this is the following:

In [3]: [n ** 2 for n in range(12)]

Out [3]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

As with many Python statements, you can almost read off the mean‐
ing of this statement in plain English: “construct a list consisting of
the square of n for each n up to 12”.

This basic syntax, then, is [expr for var in iterable], where
expr is any valid expression, var is a variable name, and iterable is
any iterable Python object.

Multiple Iteration
Sometimes you want to build a list not just from one value, but from
two. To do this, simply add another for expression in the compre‐
hension:

In [4]: [(i, j) for i in range(2) for j in range(3)]

Out [4]: [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]

Notice that the second for expression acts as the interior index,
varying the fastest in the resulting list. This type of construction can
be extended to three, four, or more iterators within the comprehen‐
sion, though at some point code readability will suffer!

Conditionals on the Iterator
You can further control the iteration by adding a conditional to the
end of the expression. In the first example of the section, we iterated
over all numbers from 1 to 20, but left out multiples of 3. Look at
this again, and notice the construction:

In [5]: [val for val in range(20) if val % 3 > 0]

Out [5]: [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

The expression (i % 3 > 0) evaluates to True unless val is divisible
by 3. Again, the English language meaning can be immediately read
off: “Construct a list of values for each value up to 20, but only if the

List Comprehensions | 59

value is not divisible by 3”. Once you are comfortable with it, this is
much easier to write—and to understand at a glance—than the
equivalent loop syntax:

In [6]: L = []
 for val in range(20):
 if val % 3:
 L.append(val)
 L

Out [6]: [1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19]

Conditionals on the Value
If you’ve programmed in C, you might be familiar with the single-
line conditional enabled by the ? operator:

int absval = (val < 0) ? -val : val

Python has something very similar to this, which is most often used
within list comprehensions, lambda functions, and other places
where a simple expression is desired:

In [7]: val = -10
 val if val >= 0 else -val

Out [7]: 10

We see that this simply duplicates the functionality of the built-in
abs() function, but the construction lets you do some really inter‐
esting things within list comprehensions. This is getting pretty com‐
plicated now, but you could do something like this:

In [8]: [val if val % 2 else -val
 for val in range(20) if val % 3]

Out [8]: [1, -2, -4, 5, 7, -8, -10, 11, 13, -14, -16, 17, 19]

Note the line break within the list comprehension before the for
expression: this is valid in Python, and is often a nice way to break-
up long list comprehensions for greater readability. Look this over:
what we’re doing is constructing a list, leaving out multiples of 3,
and negating all multiples of 2.

Once you understand the dynamics of list comprehensions, it’s
straightforward to move on to other types of comprehensions. The
syntax is largely the same; the only difference is the type of bracket
you use.

60 | A Whirlwind Tour of Python

For example, with curly braces you can create a set with a set com‐
prehension:

In [9]: {n**2 for n in range(12)}

Out [9]: {0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121}

Recall that a set is a collection that contains no duplicates. The set
comprehension respects this rule, and eliminates any duplicate
entries:

In [10]: {a % 3 for a in range(1000)}

Out [10]: {0, 1, 2}

With a slight tweak, you can add a colon (:) to create a dict compre‐
hension:

In [11]: {n:n**2 for n in range(6)}

Out [11]: {0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Finally, if you use parentheses rather than square brackets, you get
what’s called a generator expression:

In [12]: (n**2 for n in range(12))

Out [12]: <generator object <genexpr> at 0x1027a5a50>

A generator expression is essentially a list comprehension in which
elements are generated as needed rather than all at once, and the
simplicity here belies the power of this language feature: we’ll
explore this more next.

Generators
Here we’ll take a deeper dive into Python generators, including gen‐
erator expressions and generator functions.

Generator Expressions
The difference between list comprehensions and generator expres‐
sions is sometimes confusing; here we’ll quickly outline the differ‐
ences between them.

List comprehensions use square brackets, while generator expressions use
parentheses
This is a representative list comprehension:

In [1]: [n ** 2 for n in range(12)]

Generators | 61

Out [1]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

While this is a representative generator expression:

In [2]: (n ** 2 for n in range(12))

Out [2]: <generator object <genexpr> at 0x104a60518>

Notice that printing the generator expression does not print the
contents; one way to print the contents of a generator expression is
to pass it to the list constructor:

In [3]: G = (n ** 2 for n in range(12))
 list(G)

Out [3]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

A list is a collection of values, while a generator is a recipe for producing
values
When you create a list, you are actually building a collection of val‐
ues, and there is some memory cost associated with that. When you
create a generator, you are not building a collection of values, but a
recipe for producing those values. Both expose the same iterator
interface, as we can see here:

In [4]: L = [n ** 2 for n in range(12)]
 for val in L:
 print(val, end=' ')

0 1 4 9 16 25 36 49 64 81 100 121

In [5]: G = (n ** 2 for n in range(12))
 for val in G:
 print(val, end=' ')

0 1 4 9 16 25 36 49 64 81 100 121

The difference is that a generator expression does not actually com‐
pute the values until they are needed. This not only leads to memory
efficiency, but to computational efficiency as well! This also means
that while the size of a list is limited by available memory, the size of
a generator expression is unlimited!

An example of an infinite generator expression can be created using
the count iterator defined in itertools:

In [6]: from itertools import count
 count()

Out [6]: count(0)

62 | A Whirlwind Tour of Python

In [7]: for i in count():
 print(i, end=' ')
 if i >= 10: break

0 1 2 3 4 5 6 7 8 9 10

The count iterator will go on happily counting forever until you tell
it to stop; this makes it convenient to create generators that will also
go on forever:

In [8]:
factors = [2, 3, 5, 7]
G = (i for i in count() if all(i % n > 0 for n in factors))
for val in G:
 print(val, end=' ')
 if val > 40: break

1 11 13 17 19 23 29 31 37 41

You might see what we’re getting at here: if we were to expand the
list of factors appropriately, what we would have the beginnings of is
a prime number generator, using the Sieve of Eratosthenes algo‐
rithm. We’ll explore this more momentarily.

A list can be iterated multiple times; a generator expression is single use
This is one of those potential gotchas of generator expressions. With
a list, we can straightforwardly do this:

In [9]: L = [n ** 2 for n in range(12)]
 for val in L:
 print(val, end=' ')
 print()

 for val in L:
 print(val, end=' ')

0 1 4 9 16 25 36 49 64 81 100 121
0 1 4 9 16 25 36 49 64 81 100 121

A generator expression, on the other hand, is used up after one
iteration:

In [10]: G = (n ** 2 for n in range(12))
 list(G)

Out [10]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

In [11]: list(G)

Out [11]: []

Generators | 63

This can be very useful because it means iteration can be stopped
and started:

In [12]: G = (n**2 for n in range(12))
 for n in G:
 print(n, end=' ')
 if n > 30: break

 print("\ndoing something in between")

 for n in G:
 print(n, end=' ')

0 1 4 9 16 25 36
doing something in between
49 64 81 100 121

One place I’ve found this useful is when working with collections of
data files on disk; it means that you can quite easily analyze them in
batches, letting the generator keep track of which ones you have yet
to see.

Generator Functions: Using yield
We saw in the previous section that list comprehensions are best
used to create relatively simple lists, while using a normal for loop
can be better in more complicated situations. The same is true of
generator expressions: we can make more complicated generators
using generator functions, which make use of the yield statement.

Here we have two ways of constructing the same list:

In [13]: L1 = [n ** 2 for n in range(12)]

 L2 = []
 for n in range(12):
 L2.append(n ** 2)

 print(L1)
 print(L2)

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121]

Similarly, here we have two ways of constructing equivalent genera‐
tors:

In [14]: G1 = (n ** 2 for n in range(12))

 def gen():
 for n in range(12):

64 | A Whirlwind Tour of Python

 yield n ** 2

 G2 = gen()
 print(*G1)
 print(*G2)

0 1 4 9 16 25 36 49 64 81 100 121
0 1 4 9 16 25 36 49 64 81 100 121

A generator function is a function that, rather than using return to
return a value once, uses yield to yield a (potentially infinite)
sequence of values. Just as in generator expressions, the state of the
generator is preserved between partial iterations, but if we want a
fresh copy of the generator we can simply call the function again.

Example: Prime Number Generator
Here I’ll show my favorite example of a generator function: a func‐
tion to generate an unbounded series of prime numbers. A classic
algorithm for this is the Sieve of Eratosthenes, which works some‐
thing like this:

In [15]: # Generate a list of candidates
 L = [n for n in range(2, 40)]
 print(L)

[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, \
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, \
30, 31, 32, 33, 34, 35, 36, 37, 38, 39]

In [16]: # Remove all multiples of the first value
 L = [n for n in L if n == L[0] or n % L[0] > 0]
 print(L)

[2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, \
29, 31, 33, 35, 37, 39]

In [17]: # Remove all multiples of the second value
 L = [n for n in L if n == L[1] or n % L[1] > 0]
 print(L)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37]

In [18]: # Remove all multiples of the third value
 L = [n for n in L if n == L[2] or n % L[2] > 0]
 print(L)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

If we repeat this procedure enough times on a large enough list, we
can generate as many primes as we wish.

Let’s encapsulate this logic in a generator function:

Generators | 65

In [19]: def gen_primes(N):
 """Generate primes up to N"""
 primes = set()
 for n in range(2, N):
 if all(n % p > 0 for p in primes):
 primes.add(n)
 yield n

 print(*gen_primes(70))

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

That’s all there is to it! While this is certainly not the most computa‐
tionally efficient implementation of the Sieve of Eratosthenes, it
illustrates how convenient the generator function syntax can be for
building more complicated sequences.

Modules and Packages
One feature of Python that makes it useful for a wide range of tasks
is the fact that it comes “batteries included”—that is, the Python
standard library contains useful tools for a wide range of tasks. On
top of this, there is a broad ecosystem of third-party tools and pack‐
ages that offer more specialized functionality. Here we’ll take a look
at importing standard library modules, tools for installing third-
party modules, and a description of how you can make your own
modules.

Loading Modules: the import Statement
For loading built-in and third-party modules, Python provides the
import statement. There are a few ways to use the statement, which
we will mention briefly here, from most recommended to least rec‐
ommended.

Explicit module import
Explicit import of a module preserves the module’s content in a
namespace. The namespace is then used to refer to its contents with
a . between them. For example, here we’ll import the built-in math
module and compute the sine of pi:

In [1]: import math
 math.cos(math.pi)

Out [1]: -1.0

66 | A Whirlwind Tour of Python

Explicit module import by alias
For longer module names, it’s not convenient to use the full module
name each time you access some element. For this reason, we’ll
commonly use the import ... as ... pattern to create a shorter
alias for the namespace. For example, the NumPy (Numerical
Python) package, a popular third-party package useful for data sci‐
ence, is by convention imported under the alias np:

In [2]: import numpy as np
 np.cos(np.pi)

Out [2]: -1.0

Explicit import of module contents
Sometimes rather than importing the module namespace, you
would just like to import a few particular items from the module.
This can be done with the from ... import ... pattern. For exam‐
ple, we can import just the cos function and the pi constant from
the math module:

In [3]: from math import cos, pi
 cos(pi)

Out [3]: -1.0

Implicit import of module contents
Finally, it is sometimes useful to import the entirety of the module
contents into the local namespace. This can be done with the
from ... import * pattern:

In [4]: from math import *
 sin(pi) ** 2 + cos(pi) ** 2

Out [4]: 1.0

This pattern should be used sparingly, if at all. The problem is that
such imports can sometimes overwrite function names that you do
not intend to overwrite, and the implicitness of the statement makes
it difficult to determine what has changed.

For example, Python has a built-in sum function that can be used for
various operations:

In [5]: help(sum)

 Help on built-in function sum in module builtins:

 sum(...)

Modules and Packages | 67

 sum(iterable[, start]) -> value

 Return the sum of an iterable of numbers
 (NOT strings) plus the value of parameter
 'start' (which defaults to 0).
 When the iterable is empty, return start.

We can use this to compute the sum of a sequence, starting with a
certain value (here, we’ll start with -1):

In [6]: sum(range(5), -1)

Out [6]: 9

Now observe what happens if we make the exact same function call
after importing * from numpy:

In [7]: from numpy import *

In [8]: sum(range(5), -1)

Out [8]: 10

The result is off by one! The reason for this is that the import *
statement replaces the built-in sum function with the numpy.sum
function, which has a different call signature: in the former, we’re
summing range(5) starting at -1; in the latter, we’re summing
range(5) along the last axis (indicated by -1). This is the type of sit‐
uation that may arise if care is not taken when using import *—for
this reason, it is best to avoid this unless you know exactly what you
are doing.

Importing from Python’s Standard Library
Python’s standard library contains many useful built-in modules,
which you can read about fully in Python’s documentation. Any of
these can be imported with the import statement, and then explored
using the help function discussed in the previous section. Here is an
extremely incomplete list of some of the modules you might wish to
explore and learn about:

os and sys Tools for interfacing with the operating system, including navigating file
directory structures and executing shell commands

math and cmath Mathematical functions and operations on real and complex numbers

itertools Tools for constructing and interacting with iterators and generators

functools Tools that assist with functional programming

random Tools for generating pseudorandom numbers

68 | A Whirlwind Tour of Python

pickle Tools for object persistence: saving objects to and loading objects from disk

json and csv Tools for reading JSON-formatted and CSV-formatted files

urllib Tools for doing HTTP and other web requests

You can find information on these, and many more, in the Python
standard library documentation: https://docs.python.org/3/library/.

Importing from Third-Party Modules
One of the things that makes Python useful, especially within the
world of data science, is its ecosystem of third-party modules. These
can be imported just as the built-in modules, but first the modules
must be installed on your system. The standard registry for such
modules is the Python Package Index (PyPI for short), found on the
Web at http://pypi.python.org/. For convenience, Python comes with
a program called pip (a recursive acronym meaning “pip installs
packages”), which will automatically fetch packages released and lis‐
ted on PyPI (if you use Python version 2, pip must be installed sepa‐
rately). For example, if you’d like to install the supersmoother
package that I wrote, all that is required is to type the following at
the command line:

$ pip install supersmoother

The source code for the package will be automatically downloaded
from the PyPI repository, and the package installed in the standard
Python path (assuming you have permission to do so on the com‐
puter you’re using).

For more information about PyPI and the pip installer, refer to the
documentation at http://pypi.python.org/.

String Manipulation and Regular Expressions
One place where the Python language really shines is in the manipu‐
lation of strings. This section will cover some of Python’s built-in
string methods and formatting operations, before moving on to a
quick guide to the extremely useful subject of regular expressions.
Such string manipulation pattens come up often in the context of
data science work, and is one big perk of Python in this context.

Strings in Python can be defined using either single or double quo‐
tations (they are functionally equivalent):

String Manipulation and Regular Expressions | 69

In [1]: x = 'a string'
 y = "a string"
 x == y

Out [1]: True

In addition, it is possible to define multiline strings using a triple-
quote syntax:

In [2]: multiline = """
 one
 two
 three
 """

With this, let’s take a quick tour of some of Python’s string manipu‐
lation tools.

Simple String Manipulation in Python
For basic manipulation of strings, Python’s built-in string methods
can be extremely convenient. If you have a background working in
C or another low-level language, you will likely find the simplicity of
Python’s methods extremely refreshing. We introduced Python’s
string type and a few of these methods earlier; here we’ll dive a bit
deeper.

Formatting strings: Adjusting case
Python makes it quite easy to adjust the case of a string. Here we’ll
look at the upper(), lower(), capitalize(), title(), and swap
case() methods, using the following messy string as an example:

In [3]: fox = "tHe qUICk bROWn fOx."

To convert the entire string into uppercase or lowercase, you can use
the upper() or lower() methods respectively:

In [4]: fox.upper()

Out [4]: 'THE QUICK BROWN FOX.'

In [5]: fox.lower()

Out [5]: 'the quick brown fox.'

A common formatting need is to capitalize just the first letter of
each word, or perhaps the first letter of each sentence. This can be
done with the title() and capitalize() methods:

In [6]: fox.title()

70 | A Whirlwind Tour of Python

Out [6]: 'The Quick Brown Fox.'

In [7]: fox.capitalize()

Out [7]: 'The quick brown fox.'

The cases can be swapped using the swapcase() method:

In [8]: fox.swapcase()

Out [8]: 'ThE QuicK BrowN FoX.'

Formatting strings: Adding and removing spaces
Another common need is to remove spaces (or other characters)
from the beginning or end of the string. The basic method of
removing characters is the strip() method, which strips whitespace
from the beginning and end of the line:

In [9]: line = ' this is the content '
 line.strip()

Out [9]: 'this is the content'

To remove just space to the right or left, use rstrip() or lstrip(),
respectively:

In [10]: line.rstrip()

Out [10]: ' this is the content'

In [11]: line.lstrip()

Out [11]: 'this is the content '

To remove characters other than spaces, you can pass the desired
character to the strip() method:

In [12]: num = "000000000000435"
 num.strip('0')

Out [12]: '435'

The opposite of this operation, adding spaces or other characters,
can be accomplished using the center(), ljust(), and rjust()
methods.

For example, we can use the center() method to center a given
string within a given number of spaces:

In [13]: line = "this is the content"
 line.center(30)

Out [13]: ' this is the content '

String Manipulation and Regular Expressions | 71

Similarly, ljust() and rjust() will left-justify or right-justify the
string within spaces of a given length:

In [14]: line.ljust(30)

Out [14]: 'this is the content '

In [15]: line.rjust(30)

Out [15]: ' this is the content'

All these methods additionally accept any character which will be
used to fill the space. For example:

In [16]: '435'.rjust(10, '0')

Out [16]: '0000000435'

Because zero-filling is such a common need, Python also provides
zfill(), which is a special method to right-pad a string with zeros:

In [17]: '435'.zfill(10)

Out [17]: '0000000435'

Finding and replacing substrings
If you want to find occurrences of a certain character in a string, the
find()/rfind(), index()/rindex(), and replace() methods are
the best built-in methods.

find() and index() are very similar, in that they search for the first
occurrence of a character or substring within a string, and return
the index of the substring:

In [18]: line = 'the quick brown fox jumped over a lazy dog'
 line.find('fox')

Out [18]: 16

In [19]: line.index('fox')

Out [19]: 16

The only difference between find() and index() is their behavior
when the search string is not found; find() returns -1, while
index() raises a ValueError:

In [20]: line.find('bear')

Out [20]: -1

In [21]: line.index('bear')

72 | A Whirlwind Tour of Python

ValueError Traceback (most recent call last)

<ipython-input-21-4cbe6ee9b0eb> in <module>()
----> 1 line.index('bear')

ValueError: substring not found

The related rfind() and rindex() work similarly, except they
search for the first occurrence from the end rather than the begin‐
ning of the string:

In [22]: line.rfind('a')

Out [22]: 35

For the special case of checking for a substring at the beginning or
end of a string, Python provides the startswith() and endswith()
methods:

In [23]: line.endswith('dog')

Out [23]: True

In [24]: line.startswith('fox')

Out [24]: False

To go one step further and replace a given substring with a new
string, you can use the replace() method. Here, let’s replace
'brown' with 'red':

In [25]: line.replace('brown', 'red')

Out [25]: 'the quick red fox jumped over a lazy dog'

The replace() function returns a new string, and will replace all
occurrences of the input:

In [26]: line.replace('o', '--')

Out [26]: 'the quick br--wn f--x jumped --ver a lazy d--g'

For a more flexible approach to this replace() functionality, see the
discussion of regular expressions in “Flexible Pattern Matching with
Regular Expressions” on page 76.

String Manipulation and Regular Expressions | 73

Splitting and partitioning strings
If you would like to find a substring and then split the string based
on its location, the partition() and/or split() methods are what
you’re looking for. Both will return a sequence of substrings.

The partition() method returns a tuple with three elements: the
substring before the first instance of the split-point, the split-point
itself, and the substring after:

In [27]: line.partition('fox')

Out [27]: ('the quick brown ', 'fox', ' jumped over a lazy dog')

The rpartition() method is similar, but searches from the right of
the string.

The split() method is perhaps more useful; it finds all instances of
the split-point and returns the substrings in between. The default is
to split on any whitespace, returning a list of the individual words in
a string:

In [28]: line.split()

Out [28]: ['the', 'quick', 'brown', 'fox', 'jumped',\
 'over', 'a', 'lazy', 'dog']

A related method is splitlines(), which splits on newline charac‐
ters. Let’s do this with a haiku popularly attributed to the 17th-
century poet Matsuo Bashō:

In [29]: haiku = """matsushima-ya
 aah matsushima-ya
 matsushima-ya"""

 haiku.splitlines()

['matsushima-ya', 'aah matsushima-ya', 'matsushima-ya']

Note that if you would like to undo a split(), you can use the
join() method, which returns a string built from a split-point and
an iterable:

In [30]: '--'.join(['1', '2', '3'])

Out [30]: '1--2--3'

A common pattern is to use the special character \n (newline) to
join together lines that have been previously split, and recover the
input:

74 | A Whirlwind Tour of Python

In [31]: print("\n".join(['matsushima-ya', 'aah matsushima-ya',
 'matsushima-ya']))

matsushima-ya
aah matsushima-ya
matsushima-ya

Format Strings
In the preceding methods, we have learned how to extract values
from strings, and to manipulate strings themselves into desired for‐
mats. Another use of string methods is to manipulate string repre‐
sentations of values of other types. Of course, string representations
can always be found using the str() function; for example:

In [32]: pi = 3.14159
 str(pi)

Out [32]: '3.14159'

For more complicated formats, you might be tempted to use string
arithmetic as outlined in “Basic Python Semantics: Operators” on
page 17:

In [33]: "The value of pi is " + str(pi)

Out [33]: 'The value of pi is 3.14159'

A more flexible way to do this is to use format strings, which are
strings with special markers (noted by curly braces) into which
string-formatted values will be inserted. Here is a basic example:

In [34]: "The value of pi is {}".format(pi)

Out [34]: 'The value of pi is 3.14159'

Inside the {} marker you can also include information on exactly
what you would like to appear there. If you include a number, it will
refer to the index of the argument to insert:

In [35]:
"""First letter: {0}. Last letter: {1}.""".format('A', 'Z')

Out [35]: 'First letter: A. Last letter: Z.'

If you include a string, it will refer to the key of any keyword argu‐
ment:

In [36]:
"""First: {first}. Last: {last}.""".format(last='Z', first='A')

Out [36]: 'First: A. Last: Z.'

String Manipulation and Regular Expressions | 75

Finally, for numerical inputs, you can include format codes that con‐
trol how the value is converted to a string. For example, to print a
number as a floating point with three digits after the decimal point,
you can use the following:

In [37]: "pi = {0:.3f}".format(pi)

Out [37]: 'pi = 3.142'

As before, here the 0 refers to the index of the value to be inserted.
The : marks that format codes will follow. The .3f encodes the
desired precision: three digits beyond the decimal point, floating-
point format.

This style of format specification is very flexible, and the examples
here barely scratch the surface of the formatting options available.
For more information on the syntax of these format strings, see the
“Format Specification” section of Python’s online documentation.

Flexible Pattern Matching with Regular Expressions
The methods of Python’s str type give you a powerful set of tools
for formatting, splitting, and manipulating string data. But even
more powerful tools are available in Python’s built-in regular expres‐
sion module. Regular expressions are a huge topic; there are entire
books written on the topic (including Jeffrey E.F. Friedl’s Mastering
Regular Expressions, 3rd Edition), so it will be hard to do justice
within just a single subsection.

My goal here is to give you an idea of the types of problems that
might be addressed using regular expressions, as well as a basic idea
of how to use them in Python. I’ll suggest some references for learn‐
ing more in “Resources for Further Learning” on page 90.

Fundamentally, regular expressions are a means of flexible pattern
matching in strings. If you frequently use the command line, you are
probably familiar with this type of flexible matching with the * char‐
acter, which acts as a wildcard. For example, we can list all the IPy‐
thon notebooks (i.e., files with extension .ipynb) with “Python” in
their filename by using the * wildcard to match any characters in
between:

In [38]: !ls *Python*.ipynb

01-How-to-Run-Python-Code.ipynb 02-Basic-Python-Syntax.ipynb

76 | A Whirlwind Tour of Python

Regular expressions generalize this “wildcard” idea to a wide range
of flexible string-matching syntaxes. The Python interface to regular
expressions is contained in the built-in re module; as a simple
example, let’s use it to duplicate the functionality of the string
split() method:

In [39]: import re
 regex = re.compile('\s+')
 regex.split(line)

Out [39]: ['the', 'quick', 'brown', 'fox', 'jumped', \
 'over', 'a', 'lazy', 'dog']

Here we’ve first compiled a regular expression, then used it to split a
string. Just as Python’s split() method returns a list of all sub‐
strings between whitespace, the regular expression split() method
returns a list of all substrings between matches to the input pattern.

In this case, the input is \s+: \s is a special character that matches
any whitespace (space, tab, newline, etc.), and the + is a character
that indicates one or more of the entity preceding it. Thus, the regu‐
lar expression matches any substring consisting of one or more
spaces.

The split() method here is basically a convenience routine built
upon this pattern matching behavior; more fundamental is the
match() method, which will tell you whether the beginning of a
string matches the pattern:

In [40]: for s in [" ", "abc ", " abc"]:
 if regex.match(s):
 print(repr(s), "matches")
 else:
 print(repr(s), "does not match")

' ' matches
'abc ' does not match
' abc' matches

Like split(), there are similar convenience routines to find the first
match (like str.index() or str.find()) or to find and replace (like
str.replace()). We’ll again use the line from before:

In [41]: line = 'the quick brown fox jumped over a lazy dog'

With this, we can see that the regex.search() method operates a lot
like str.index() or str.find():

String Manipulation and Regular Expressions | 77

In [42]: line.index('fox')

Out [42]: 16

In [43]: regex = re.compile('fox')
 match = regex.search(line)
 match.start()

Out [43]: 16

Similarly, the regex.sub() method operates much like
str.replace():

In [44]: line.replace('fox', 'BEAR')

Out [44]: 'the quick brown BEAR jumped over a lazy dog'

In [45]: regex.sub('BEAR', line)

Out [45]: 'the quick brown BEAR jumped over a lazy dog'

With a bit of thought, other native string operations can also be cast
as regular expressions.

A more sophisticated example
But, you might ask, why would you want to use the more compli‐
cated and verbose syntax of regular expressions rather than the
more intuitive and simple string methods? The advantage is that
regular expressions offer far more flexibility.

Here we’ll consider a more complicated example: the common task
of matching email addresses. I’ll start by simply writing a (somewhat
indecipherable) regular expression, and then walk through what is
going on. Here it goes:

In [46]: email = re.compile('\w+@\w+\.[a-z]{3}')

Using this, if we’re given a line from a document, we can quickly
extract things that look like email addresses:

In [47]: text = "To email Guido, try guido@python.org \
 or the older address guido@google.com."
 email.findall(text)

Out [47]: ['guido@python.org', 'guido@google.com']

(Note that these addresses are entirely made up; there are probably
better ways to get in touch with Guido).

We can do further operations, like replacing these email addresses
with another string, perhaps to hide addresses in the output:

In [48]: email.sub('--@--.--', text)

78 | A Whirlwind Tour of Python

Out [48]:
'To email Guido, try --@--.-- or the older address --@--.--.'

Finally, note that if you really want to match any email address, the
preceding regular expression is far too simple. For example, it only
allows addresses made of alphanumeric characters that end in one
of several common domain suffixes. So, for example, the period
used here means that we only find part of the address:

In [49]: email.findall('barack.obama@whitehouse.gov')

Out [49]: ['obama@whitehouse.gov']

This goes to show how unforgiving regular expressions can be if
you’re not careful! If you search around online, you can find some
suggestions for regular expressions that will match all valid emails,
but beware: they are much more involved than the simple expres‐
sion used here!

Basics of regular expression syntax
The syntax of regular expressions is much too large a topic for this
short section. Still, a bit of familiarity can go a long way: I will walk
through some of the basic constructs here, and then list some more
complete resources from which you can learn more. My hope is that
the following quick primer will enable you to use these resources
effectively.

Simple strings are matched directly. If you build a regular expression
on a simple string of characters or digits, it will match that exact
string:

In [50]: regex = re.compile('ion')
 regex.findall('Great Expectations')

Out [50]: ['ion']

Some characters have special meanings. While simple letters or num‐
bers are direct matches, there are a handful of characters that have
special meanings within regular expressions. They are:

. ^ $ * + ? { } [] \ | ()

We will discuss the meaning of some of these momentarily. In the
meantime, you should know that if you’d like to match any of these
characters directly, you can escape them with a backslash:

In [51]: regex = re.compile(r'\$')
 regex.findall("the cost is $20")

String Manipulation and Regular Expressions | 79

Out [51]: ['$']

The r preface in r'\$' indicates a raw string; in standard Python
strings, the backslash is used to indicate special characters. For
example, a tab is indicated by \t:

In [52]: print('a\tb\tc')

a b c

Such substitutions are not made in a raw string:

In [53]: print(r'a\tb\tc')

a\tb\tc

For this reason, whenever you use backslashes in a regular expres‐
sion, it is good practice to use a raw string.

Special characters can match character groups. Just as the \ character
within regular expressions can escape special characters, turning
them into normal characters, it can also be used to give normal
characters special meaning. These special characters match specified
groups of characters, and we’ve seen them before. In the email
address regexp from before, we used the character \w, which is a
special marker matching any alphanumeric character. Similarly, in
the simple split() example, we also saw \s, a special marker indi‐
cating any whitespace character.

Putting these together, we can create a regular expression that will
match any two letters/digits with whitespace between them:

In [54]: regex = re.compile(r'\w\s\w')
 regex.findall('the fox is 9 years old')

Out [54]: ['e f', 'x i', 's 9', 's o']

This example begins to hint at the power and flexibility of regular
expressions.

The following table lists a few of these characters that are commonly
useful:

Character Description

\d Match any digit

\D Match any non-digit

\s Match any whitespace

\S Match any non-whitespace

80 | A Whirlwind Tour of Python

Character Description

\w Match any alphanumeric char

\W Match any non-alphanumeric char

This is not a comprehensive list or description; for more details, see
Python’s regular expression syntax documentation.

Square brackets match custom character groups. If the built-in charac‐
ter groups aren’t specific enough for you, you can use square brack‐
ets to specify any set of characters you’re interested in. For example,
the following will match any lowercase vowel:

In [55]: regex = re.compile('[aeiou]')
 regex.split('consequential')

Out [55]: ['c', 'ns', 'q', '', 'nt', '', 'l']

Similarly, you can use a dash to specify a range: for example, [a-z]
will match any lowercase letter, and [1-3] will match any of 1, 2, or
3. For instance, you may need to extract from a document specific
numerical codes that consist of a capital letter followed by a digit.
You could do this as follows:

In [56]: regex = re.compile('[A-Z][0-9]')
 regex.findall('1043879, G2, H6')

Out [56]: ['G2', 'H6']

Wildcards match repeated characters. If you would like to match a
string with, say, three alphanumeric characters in a row, it is possible
to write, for example, \w\w\w. Because this is such a common need,
there is a specific syntax to match repetitions—curly braces with a
number:

In [57]: regex = re.compile(r'\w{3}')
 regex.findall('The quick brown fox')

Out [57]: ['The', 'qui', 'bro', 'fox']

There are also markers available to match any number of repetitions
—for example, the + character will match one or more repetitions of
what precedes it:

In [58]: regex = re.compile(r'\w+')
 regex.findall('The quick brown fox')

Out [58]: ['The', 'quick', 'brown', 'fox']

String Manipulation and Regular Expressions | 81

The following is a table of the repetition markers available for use in
regular expressions:

Character Description Example

? Match zero or one repetitions of preceding ab? matches a or ab

* Match zero or more repetitions of preceding ab* matches a, ab, abb, abbb…

+ match one or more repetitions of preceding ab+ matches ab, abb, abbb… but
not a

{n} Match n repetitions of preceding ab{2} matches abb

{m,n} Match between m and n repetitions of
preceding

ab{2,3} matches abb or abbb

With these basics in mind, let’s return to our email address matcher:

In [59]: email = re.compile(r'\w+@\w+\.[a-z]{3}')

We can now understand what this means: we want one or more
alphanumeric characters (\w+) followed by the at sign (@), followed
by one or more alphanumeric characters (\w+), followed by a period
(\.—note the need for a backslash escape), followed by exactly three
lowercase letters.

If we want to now modify this so that the Obama email address
matches, we can do so using the square-bracket notation:

In [60]: email2 = re.compile(r'[\w.]+@\w+\.[a-z]{3}')
 email2.findall('barack.obama@whitehouse.gov')

Out [60]: ['barack.obama@whitehouse.gov']

We have changed \w+ to [\w.]+, so we will match any alphanumeric
character or a period. With this more flexible expression, we can
match a wider range of email addresses (though still not all—can
you identify other shortcomings of this expression?).

Parentheses indicate groups to extract. For compound regular expres‐
sions like our email matcher, we often want to extract their compo‐
nents rather than the full match. This can be done using parentheses
to group the results:

In [61]: email3 = re.compile(r'([\w.]+)@(\w+)\.([a-z]{3})')

In [62]: text = "To email Guido, try guido@python.org"\
 "or the older address guido@google.com."
 email3.findall(text)

82 | A Whirlwind Tour of Python

Out [62]:
[('guido', 'python', 'org'), ('guido', 'google', 'com')]

As we see, this grouping actually extracts a list of the sub-
components of the email address.

We can go a bit further and name the extracted components using
the (?P<name>) syntax, in which case the groups can be extracted
as a Python dictionary:

In [63]:
email4 = re.compile(r'(?P<user>[\w.]+)@(?P<domain>\w+)'\
 '\.(?P<suffix>[a-z]{3})')
match = email4.match('guido@python.org')
match.groupdict()

Out [63]: {'domain': 'python', 'suffix': 'org', 'user': 'guido'}

Combining these ideas (as well as some of the powerful regexp syn‐
tax that we have not covered here) allows you to flexibly and quickly
extract information from strings in Python.

Further Resources on Regular Expressions
The preceding discussion is just a quick (and far from complete)
treatment of this large topic. If you’d like to learn more, I recom‐
mend the following resources:

Python’s re package documentation
I find that I promptly forget how to use regular expressions just
about every time I use them. Now that I have the basics down,
I’ve found this page to be an incredibly valuable resource to
recall what each specific character or sequence means within a
regular expression.

Python’s official regular expression HOWTO
A more narrative approach to regular expressions in Python.

Mastering Regular Expressions (O’Reilly, 2006)
This is a 500+ page book on the subject. If you want a really
complete treatment of this topic, this is the resource for you.

For some examples of string manipulation and regular expressions
in action at a larger scale, see “Pandas: Labeled Column-Oriented
Data” on page 86, where we look at applying these sorts of expres‐
sions across tables of string data within the Pandas package.

String Manipulation and Regular Expressions | 83

A Preview of Data Science Tools
If you would like to spring from here and go farther in using Python
for scientific computing or data science, there are a few packages
that will make your life much easier. This section will introduce and
preview several of the more important ones, and give you an idea of
the types of applications they are designed for. If you’re using the
Anaconda or Miniconda environment suggested at the beginning of
this report, you can install the relevant packages with the following
command:

$ conda install numpy scipy pandas matplotlib scikit-learn

Let’s take a brief look at each of these in turn.

NumPy: Numerical Python
NumPy provides an efficient way to store and manipulate multidi‐
mensional dense arrays in Python. The important features of
NumPy are:

• It provides an ndarray structure, which allows efficient storage
and manipulation of vectors, matrices, and higher-dimensional
datasets.

• It provides a readable and efficient syntax for operating on this
data, from simple element-wise arithmetic to more complicated
linear algebraic operations.

In the simplest case, NumPy arrays look a lot like Python lists. For
example, here is an array containing the range of numbers 1 to 9
(compare this with Python’s built-in range()):

In [1]: import numpy as np
 x = np.arange(1, 10)
 x

Out [1]: array([1, 2, 3, 4, 5, 6, 7, 8, 9])

NumPy’s arrays offer both efficient storage of data, as well as effi‐
cient element-wise operations on the data. For example, to square
each element of the array, we can apply the ** operator to the array
directly:

In [2]: x ** 2

Out [2]: array([1, 4, 9, 16, 25, 36, 49, 64, 81])

84 | A Whirlwind Tour of Python

Compare this with the much more verbose Python-style list com‐
prehension for the same result:

In [3]: [val ** 2 for val in range(1, 10)]

Out [3]: [1, 4, 9, 16, 25, 36, 49, 64, 81]

Unlike Python lists (which are limited to one dimension), NumPy
arrays can be multidimensional. For example, here we will reshape
our x array into a 3x3 array:

In [4]: M = x.reshape((3, 3))
 M

Out [4]: array([[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]])

A two-dimensional array is one representation of a matrix, and
NumPy knows how to efficiently do typical matrix operations. For
example, you can compute the transpose using .T:

In [5]: M.T

Out [5]: array([[1, 4, 7],
 [2, 5, 8],
 [3, 6, 9]])

or a matrix-vector product using np.dot:

In [6]: np.dot(M, [5, 6, 7])

Out [6]: array([38, 92, 146])

and even more sophisticated operations like eigenvalue decomposi‐
tion:

In [7]: np.linalg.eigvals(M)

Out [7]:
array([1.61168440e+01, -1.11684397e+00, -1.30367773e-15])

Such linear algebraic manipulation underpins much of modern data
analysis, particularly when it comes to the fields of machine learning
and data mining.

For more information on NumPy, see “Resources for Further Learn‐
ing” on page 90.

A Preview of Data Science Tools | 85

Pandas: Labeled Column-Oriented Data
Pandas is a much newer package than NumPy, and is in fact built on
top of it. What Pandas provides is a labeled interface to multidimen‐
sional data, in the form of a DataFrame object that will feel very
familiar to users of R and related languages. DataFrames in Pandas
look something like this:

In [8]:
import pandas as pd
df = pd.DataFrame({'label': ['A', 'B', 'C', 'A', 'B', 'C'],
 'value': [1, 2, 3, 4, 5, 6]})
df

Out [8]: label value
 0 A 1
 1 B 2
 2 C 3
 3 A 4
 4 B 5
 5 C 6

The Pandas interface allows you to do things like select columns by
name:

In [9]: df['label']

Out [9]: 0 A
 1 B
 2 C
 3 A
 4 B
 5 C
 Name: label, dtype: object

Apply string operations across string entries:

In [10]: df['label'].str.lower()

Out [10]: 0 a
 1 b
 2 c
 3 a
 4 b
 5 c
 Name: label, dtype: object

Apply aggregates across numerical entries:

In [11]: df['value'].sum()

Out [11]: 21

86 | A Whirlwind Tour of Python

And, perhaps most importantly, do efficient database-style joins and
groupings:

In [12]: df.groupby('label').sum()

Out [12]: value
 label
 A 5
 B 7
 C 9

Here in one line we have computed the sum of all objects sharing
the same label, something that is much more verbose (and much less
efficient) using tools provided in NumPy and core Python.

For more information on using Pandas, see the resources listed in
“Resources for Further Learning” on page 90.

Matplotlib: MATLAB-style scientific visualization
Matplotlib is currently the most popular scientific visualization
packages in Python. Even proponents admit that its interface is
sometimes overly verbose, but it is a powerful library for creating a
large range of plots.

To use Matplotlib, we can start by enabling the notebook mode (for
use in the Jupyter notebook) and then importing the package as plt:

In [13]: # run this if using Jupyter notebook
 %matplotlib notebook

In [14]:
import matplotlib.pyplot as plt
plt.style.use('ggplot') # make graphs in the style of R's ggplot

Now let’s create some data (as NumPy arrays, of course) and plot the
results:

In [15]: x = np.linspace(0, 10) # range of values from 0 to 10
 y = np.sin(x) # sine of these values
 plt.plot(x, y); # plot as a line

A Preview of Data Science Tools | 87

If you run this code live, you will see an interactive plot that lets you
pan, zoom, and scroll to explore the data.

This is the simplest example of a Matplotlib plot; for ideas on the
wide range of plot types available, see Matplotlib’s online gallery as
well as other references listed in “Resources for Further Learning”
on page 90.

SciPy: Scientific Python
SciPy is a collection of scientific functionality that is built on
NumPy. The package began as a set of Python wrappers to well-
known Fortran libraries for numerical computing, and has grown
from there. The package is arranged as a set of submodules, each
implementing some class of numerical algorithms. Here is an
incomplete sample of some of the more important ones for data sci‐
ence:

scipy.fftpack Fast Fourier transforms

scipy.integrate Numerical integration

scipy.interpolate Numerical interpolation

scipy.linalg Linear algebra routines

scipy.optimize Numerical optimization of functions

scipy.sparse Sparse matrix storage and linear algebra

scipy.stats Statistical analysis routines

88 | A Whirlwind Tour of Python

For example, let’s take a look at interpolating a smooth curve
between some data:

In [16]: from scipy import interpolate

 # choose eight points between 0 and 10
 x = np.linspace(0, 10, 8)
 y = np.sin(x)

 # create a cubic interpolation function
 func = interpolate.interp1d(x, y, kind='cubic')

 # interpolate on a grid of 1,000 points
 x_interp = np.linspace(0, 10, 1000)
 y_interp = func(x_interp)

 # plot the results
 plt.figure() # new figure
 plt.plot(x, y, 'o')
 plt.plot(x_interp, y_interp);

What we see is a smooth interpolation between the points.

Other Data Science Packages
Built on top of these tools are a host of other data science packages,
including general tools like Scikit-Learn for machine learning,
Scikit-Image for image analysis, and StatsModels for statistical mod‐
eling, as well as more domain-specific packages like AstroPy for

A Preview of Data Science Tools | 89

astronomy and astrophysics, NiPy for neuro-imaging, and many,
many more.

No matter what type of scientific, numerical, or statistical problem
you are facing, it’s likely there is a Python package out there that can
help you solve it.

Resources for Further Learning
This concludes our whirlwind tour of the Python language. My hope
is that if you read this far, you have an idea of the essential syntax,
semantics, operations, and functionality offered by the Python lan‐
guage, as well as some idea of the range of tools and code constructs
that you can explore further.

I have tried to cover the pieces and patterns in the Python language
that will be most useful to a data scientist using Python, but this has
by no means been a complete introduction. If you’d like to go deeper
in understanding the Python language itself and how to use it effec‐
tively, here are a handful of resources I’d recommend:

Fluent Python by Luciano Ramalho
This is an excellent O’Reilly book that explores best practices
and idioms for Python, including getting the most out of the
standard library.

Dive Into Python by Mark Pilgrim
This is a free online book that provides a ground-up introduc‐
tion to the Python language.

Learn Python the Hard Way by Zed Shaw
This book follows a “learn by trying” approach, and deliberately
emphasizes developing what may be the most useful skill a pro‐
grammer can learn: Googling things you don’t understand.

Python Essential Reference by David Beazley
This 700-page monster is well written, and covers virtually
everything there is to know about the Python language and its
built-in libraries. For a more application-focused Python walk-
through, see Beazley’s Python Cookbook.

To dig more into Python tools for data science and scientific com‐
puting, I recommend the following books:

90 | A Whirlwind Tour of Python

The Python Data Science Handbook by yours truly
This book starts precisely where this report leaves off, and pro‐
vides a comprehensive guide to the essential tools in Python’s
data science stack, from data munging and manipulation to
machine learning.

Effective Computation in Physics by Katie Huff and Anthony Scopatz
This book is applicable to people far beyond the world of phys‐
ics research. It is a step-by-step, ground-up introduction to sci‐
entific computing, including an excellent introduction to many
of the tools mentioned in this report.

Python for Data Analysis by Wes McKinney, creator of the Pandas
package

This book covers the Pandas library in detail, as well as giving
useful information on some of the other tools that enable it.

Finally, for an even broader look at what’s out there, I recommend
the following:

O’Reilly Python Resources
O’Reilly features a number of excellent books on Python itself
and specialized topics in the Python world.

PyCon, SciPy, and PyData
The PyCon, SciPy, and PyData conferences draw thousands of
attendees each year, and archive the bulk of their programs each
year as free online videos. These have turned into an incredible
set of resources for learning about Python itself, Python pack‐
ages, and related topics. Search online for videos of both talks
and tutorials: the former tend to be shorter, covering new pack‐
ages or fresh looks at old ones. The tutorials tend to be several
hours, covering the use of the tools mentioned here as well as
others.

Resources for Further Learning | 91

About the Author
Jake VanderPlas is a long-time user and developer of the Python
scientific stack. He currently works as an interdisciplinary research
director at the University of Washington, conducts his own astron‐
omy research, and spends time advising and consulting with local
scientists from a wide range of fields.

