
8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 1/48

Docs » Tutorial » Built-in magic commands

 Important

This documenta�on covers IPython versions 6.0 and higher. Beginning with version 6.0,
IPython stopped suppor�ng compa�bility with Python versions lower than 3.3 including all
versions of Python 2.7.

If you are looking for an IPython version compa�ble with Python 2.7, please use the IPython
5.x LTS release and refer to its documenta�on (LTS is the long term support release).

Built-in magic commands

 Note

To Jupyter users: Magic s are specific to and provided by the IPython kernel. Whether
magic s are available on a kernel is a decision that is made by the kernel developer on a per-

kernel basis. To work properly, Magic s must use a syntax element which is not valid in the
underlying language. For example, the IPython kernel uses the % syntax element for magics
as % is not a valid unary operator in Python. While, the syntax element has meaning in other
languages.

Here is the help auto generated from the docstrings of all the available magic s func�on that
IPython ships with.

You can create an register your own magic s with IPython. You can find many user defined
magic s on PyPI. Feel free to publish your own and use the Framework :: IPython trove classifier.

Line magic s

Define an alias for a system command.

‘%alias alias_name cmd’ defines ‘alias_name’ as an alias for ‘cmd’

Then, typing ‘alias_name params’ will execute the system command ‘cmd params’ (from your
underlying opera�ng system).

%alias

https://ipython.readthedocs.io/en/stable/index.html
https://ipython.readthedocs.io/en/stable/interactive/index.html
https://pypi.io/

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 2/48

Aliases have lower precedence than magic func�ons and Python normal variables, so if
‘foo’ is both a Python variable and an alias, the alias can not be executed un�l ‘del foo’
removes the Python variable.

You can use the %l specifier in an alias defini�on to represent the whole line when the alias is
called. For example:

In [2]: alias bracket echo "Input in brackets: <%l>"
In [3]: bracket hello world
Input in brackets: <hello world>

You can also define aliases with parameters using %s specifiers (one per parameter):

In [1]: alias parts echo first %s second %s
In [2]: %parts A B
first A second B
In [3]: %parts A
Incorrect number of arguments: 2 expected.
parts is an alias to: 'echo first %s second %s'

Note that %l and %s are mutually exclusive. You can only use one or the other in your aliases.

Aliases expand Python variables just like system calls using ! or !! do: all expressions prefixed
with ‘$’ get expanded. For details of the seman�c rules, see PEP-215:
h�p://www.python.org/peps/pep-0215.html. This is the library used by IPython for variable
expansion. If you want to access a true shell variable, an extra $ is necessary to prevent its
expansion by IPython:

In [6]: alias show echo
In [7]: PATH='A Python string'
In [8]: show $PATH
A Python string
In [9]: show $$PATH
/usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...

You can use the alias facility to access all of $PATH. See the %rehashx func�on, which
automa�cally creates aliases for the contents of your $PATH.

If called with no parameters, %alias prints the current alias table for your system. For posix
systems, the default aliases are ‘cat’, ‘cp’, ‘mv’, ‘rm’, ‘rmdir’, and ‘mkdir’, and other pla�orm-
specific aliases are added. For windows-based systems, the default aliases are ‘copy’, ‘ddir’,
‘echo’, ‘ls’, ‘ldir’, ‘mkdir’, ‘ren’, and ‘rmdir’.

You can see the defini�on of alias by adding a ques�on mark in the end:

http://www.python.org/peps/pep-0215.html

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 3/48

In [1]: cat?
Repr: <alias cat for 'cat'>

%alias_ magic [-l] [-c] [-p PARAMS] name target

Create an alias for an exis�ng line or cell magic .

Examples

In [1]: %alias_ magic t timeit
Created `%t` as an alias for `%timeit`.
Created `%%t` as an alias for `%%timeit`.

In [2]: %t -n1 pass
1 loops, best of 3: 954 ns per loop

In [3]: %%t -n1
 ...: pass
 ...:
1 loops, best of 3: 954 ns per loop

In [4]: %alias_magic --cell whereami pwd
UsageError: Cell magic function `%%pwd` not found.
In [5]: %alias_magic --line whereami pwd
Created `%whereami` as an alias for `%pwd`.

In [6]: %whereami
Out[6]: u'/home/testuser'

In [7]: %alias_magic h history -p "-l 30" --line
Created `%h` as an alias for `%history -l 30`.

name Name of the magic to be created. target Name of the exis�ng line or cell magic.

-l, --line Create a line magic alias.

-c, --cell Create a cell magic alias.

-p PARAMS, --params PARAMS

 Parameters passed to the magic func�on.

%alias_ magic

posi�onal arguments:

op�onal arguments:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 4/48

Make func�ons callable without having to type parentheses.

Usage:

%autocall [mode]

The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the value is toggled on and
off (remembering the previous state).

In more detail, these values mean:

0 -> fully disabled

1 -> ac�ve, but do not apply if there are no arguments on the line.

In this mode, you get:

In [1]: callable
Out[1]: <built-in function callable>

In [2]: callable 'hello'
------> callable('hello')
Out[2]: False

2 -> Ac�ve always. Even if no arguments are present, the callable object is called:

In [2]: float
------> float()
Out[2]: 0.0

Note that even with autocall off, you can s�ll use ‘/’ at the start of a line to treat the first
argument on the command line as a func�on and add parentheses to it:

In [8]: /str 43
------> str(43)
Out[8]: '43'

all-random (note for auto-tes�ng)

Make magic func�ons callable without having to type the ini�al %.

%autocall

%auto magic

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 5/48

Without arguments toggles on/off (when off, you must call it as %auto magic , of course).
With arguments it sets the value, and you can use any of (case insensi�ve):

on, 1, True: to ac�vate
off, 0, False: to deac�vate.

Note that magic func�ons have lowest priority, so if there’s a variable whose name collides
with that of a magic fn, automagic won’t work for that func�on (you get the variable instead).
However, if you delete the variable (del var), the previously shadowed magic func�on
becomes visible to automagic again.

Manage IPython’s bookmark system.

%bookmark <name> - set bookmark to current dir %bookmark <name> <dir> - set bookmark
to <dir> %bookmark -l - list all bookmarks %bookmark -d <name> - remove bookmark
%bookmark -r - remove all bookmarks

You can later on access a bookmarked folder with:

%cd -b <name>

or simply ‘%cd <name>’ if there is no directory called <name> AND there is such a bookmark
defined.

Your bookmarks persist through IPython sessions, but they are associated with each profile.

Change the current working directory.

This command automa�cally maintains an internal list of directories you visit during your
IPython session, in the variable _dh. The command %dhist shows this history nicely
forma�ed. You can also do ‘cd -<tab>’ to see directory history conveniently.

Usage:

%bookmark

%cd

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 6/48

cd ‘dir’: changes to directory ‘dir’.

cd -: changes to the last visited directory.

cd -<n>: changes to the n-th directory in the directory history.

cd –foo: change to directory that matches ‘foo’ in history

directory <bookmark_name>, but a bookmark with the name exists.) ‘cd -b <tab>’
allows you to tab-complete bookmark names.

Op�ons:

-q: quiet. Do not print the working directory a�er the cd command is executed. By default
IPython’s cd command does print this directory, since the default prompts do not display
path informa�on.

Note that !cd doesn’t work for this purpose because the shell where !command runs is
immediately discarded a�er execu�ng ‘command’.

Examples

In [10]: cd parent/child
/home/tsuser/parent/child

Switch color scheme for prompts, info system and excep�on handlers.

Currently implemented schemes: NoColor, Linux, LightBG.

Color scheme names are not case-sensi�ve.

Examples

To get a plain black and white terminal:

%colors nocolor

configure IPython

%config Class[.trait=value]

cd -b <bookmark_name>: jump to a bookmark set by %bookmark

(note: cd <bookmark_name> is enough if there is no

%colors

%config

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 7/48

This magic exposes most of the IPython config system. Any Configurable class should be
able to be configured with the simple line:

%config Class.trait=value

Where value will be resolved in the user’s namespace, if it is an expression or variable name.

Examples

To see what classes are available for config, pass no arguments:

In [1]: %config
Available objects for config:
 TerminalInteractiveShell
 HistoryManager
 PrefilterManager
 AliasManager
 IPCompleter
 DisplayFormatter

To view what is configurable on a given class, just pass the class name:

In [2]: %config IPCompleter
IPCompleter options

IPCompleter.omit__names=<Enum>
 Current: 2
 Choices: (0, 1, 2)
 Instruct the completer to omit private method names
 Specifically, when completing on ``object.<tab>``.
 When 2 [default]: all names that start with '_' will be excluded.
 When 1: all ' magic ' names (``__foo__``) will be excluded.
 When 0: nothing will be excluded.
IPCompleter.merge_completions=<CBool>
 Current: True
 Whether to merge completion results into a single list
 If False, only the completion results from the first non-empty
 completer will be returned.
IPCompleter.limit_to__all__=<CBool>
 Current: False
 Instruct the completer to use __all__ for the completion
 Specifically, when completing on ``object.<tab>``.
 When True: only those names in obj.__all__ will be included.
 When False [default]: the __all__ attribute is ignored
IPCompleter.greedy=<CBool>
 Current: False
 Activate greedy completion
 This will enable completion on elements of lists, results of
 function calls, etc., but can be unsafe because the code is
 actually evaluated on TAB.

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 8/48

but the real use is in se�ng values:

In [3]: %config IPCompleter.greedy = True

and these values are read from the user_ns if they are variables:

In [4]: feeling_greedy=False

In [5]: %config IPCompleter.greedy = feeling_greedy

%debug [--breakpoint FILE:LINE] [statement [statement ...]]

Ac�vate the interac�ve debugger.

This magic command support two ways of ac�va�ng debugger. One is to ac�vate debugger
before execu�ng code. This way, you can set a break point, to step through the code from
the point. You can use this mode by giving statements to execute and op�onally a
breakpoint.

The other one is to ac�vate debugger in post-mortem mode. You can ac�vate this mode
simply running %debug without any argument. If an excep�on has just occurred, this lets you
inspect its stack frames interac�vely. Note that this will always work only on the last
traceback that occurred, so you must call this quickly a�er an excep�on that you wish to
inspect has fired, because if another one occurs, it clobbers the previous one.

If you want IPython to automa�cally do this on every excep�on, see the %pdb magic for
more details.

magic mode.

--breakpoint <FILE:LINE>, -b <FILE:LINE>

 Set break point at LINE in FILE.

%debug

posi�onal arguments:

statement Code to run in debugger. You can omit this in cell

op�onal arguments:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 9/48

Print your history of visited directories.

%dhist -> print full history%dhist n -> print last n entries only%dhist n1 n2 -> print entries
between n1 and n2 (n2 not included)

This history is automa�cally maintained by the %cd command, and always available as the
global list variable _dh. You can use %cd -<n> to go to directory number <n>.

Note that most of �me, you should view directory history by entering cd -<TAB>.

Return the current directory stack.

Toggle doctest mode on and off.

This mode is intended to make IPython behave as much as possible like a plain Python shell,
from the perspec�ve of how its prompts, excep�ons and output look. This makes it easy to
copy and paste parts of a session into doctests. It does so by:

Changing the prompts to the classic >>> ones.
Changing the excep�on repor�ng mode to ‘Plain’.
Disabling pre�y-prin�ng of output.

Note that IPython also supports the pas�ng of code snippets that have leading ‘>>>’ and ‘…’
prompts in them. This means that you can paste doctests from files or docstrings (even if
they have leading whitespace), and the code will execute correctly. You can then use
‘%history -t’ to see the translated history; this will give you the input a�er removal of all the
leading prompts and whitespace, which can be pasted back into an editor.

With these features, you can switch into this mode easily whenever you need to do tes�ng
and changes to doctests, without having to leave your exis�ng IPython session.

Bring up an editor and execute the resul�ng code.

%edit [op�ons] [args]

%edit runs IPython’s editor hook. The default version of this hook is set to call the editor
specified by your $EDITOR environment variable. If this isn’t found, it will default to vi under
Linux/Unix and to notepad under Windows. See the end of this docstring for how to change

%dhist

%dirs

%doctest_mode

%edit

Usage:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 10/48

the editor hook.

You can also set the value of this editor via the TerminalInteractiveShell.editor op�on in your
configura�on file. This is useful if you wish to use a different editor from your typical default
with IPython (and for Windows users who typically don’t set environment variables).

This command allows you to conveniently edit mul�-line code right in your IPython session.

If called without arguments, %edit opens up an empty editor with a temporary file and will
execute the contents of this file when you close it (don’t forget to save it!).

Op�ons:

-n <number>: open the editor at a specified line number. By default, the IPython editor hook
uses the unix syntax ‘editor +N filename’, but you can configure this by providing your own
modified hook if your favorite editor supports line-number specifica�ons with a different
syntax.

-p: this will call the editor with the same data as the previous �me it was used, regardless of
how long ago (in your current session) it was.

-r: use ‘raw’ input. This op�on only applies to input taken from the user’s history. By default,
the ‘processed’ history is used, so that magic s are loaded in their transformed version to
valid Python. If this op�on is given, the raw input as typed as the command line is used
instead. When you exit the editor, it will be executed by IPython’s own processor.

-x: do not execute the edited code immediately upon exit. This is mainly useful if you are
edi�ng programs which need to be called with command line arguments, which you can then
do using %run.

Arguments:

If arguments are given, the following possibili�es exist:

If the argument is a filename, IPython will load that into the editor. It will execute its
contents with execfile() when you exit, loading any code in the file into your interac�ve
namespace.
The arguments are ranges of input history, e.g. “7 ~1/4-6”. The syntax is the same as in
the %history magic .
If the argument is a string variable, its contents are loaded into the editor. You can thus
edit any string which contains python code (including the result of previous edits).
If the argument is the name of an object (other than a string), IPython will try to locate
the file where it was defined and open the editor at the point where it is defined. You can
use %edit function to load an editor exactly at the point where ‘func�on’ is defined, edit
it and have the file be executed automa�cally.
If the object is a macro (see %macro for details), this opens up your specified editor with a
temporary file containing the macro’s data. Upon exit, the macro is reloaded with the

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 11/48

contents of the file.

Note: opening at an exact line is only supported under Unix, and some editors (like kedit and
gedit up to Gnome 2.8) do not understand the ‘+NUMBER’ parameter necessary for this
feature. Good editors like (X)Emacs, vi, jed, pico and joe all do.

A�er execu�ng your code, %edit will return as output the code you typed in the editor
(except when it was an exis�ng file). This way you can reload the code in further invoca�ons
of %edit as a variable, via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the
prompt number of the output.

Note that %edit is also available through the alias %ed.

This is an example of crea�ng a simple func�on inside the editor and then modifying it. First,
start up the editor:

In [1]: edit
Editing... done. Executing edited code...
Out[1]: 'def foo():\n print "foo() was defined in an editing
session"\n'

We can then call the func�on foo():

In [2]: foo()
foo() was defined in an editing session

Now we edit foo. IPython automa�cally loads the editor with the (temporary) file where foo()
was previously defined:

In [3]: edit foo
Editing... done. Executing edited code...

And if we call foo() again we get the modified version:

In [4]: foo()
foo() has now been changed!

Here is an example of how to edit a code snippet successive �mes. First we call the editor:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 12/48

In [5]: edit
Editing... done. Executing edited code...
hello
Out[5]: "print 'hello'\n"

Now we call it again with the previous output (stored in _):

In [6]: edit _
Editing... done. Executing edited code...
hello world
Out[6]: "print 'hello world'\n"

Now we call it with the output #8 (stored in _8, also as Out[8]):

In [7]: edit _8
Editing... done. Executing edited code...
hello again
Out[7]: "print 'hello again'\n"

Changing the default editor hook:

If you wish to write your own editor hook, you can put it in a configura�on file which you
load at startup �me. The default hook is defined in the IPython.core.hooks module, and you
can use that as a star�ng example for further modifica�ons. That file also has general
instruc�ons on how to set a new hook for use once you’ve defined it.

Get, set, or list environment variables.

Usage:

%env: lists all environment variables/values %env var: get value for var %env var val: set
value for var %env var=val: set value for var %env var=$val: set value for var, using
python expansion if possible

Enable or disable IPython GUI event loop integra�on.

%gui [GUINAME]

%env

%gui

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 13/48

This magic replaces IPython’s threaded shells that were ac�vated using the
(pylab/wthread/etc.) command line flags. GUI toolkits can now be enabled at run�me and
keyboard interrupts should work without any problems. The following toolkits are supported:
wxPython, PyQt4, PyGTK, Tk and Cocoa (OSX):

%gui wx # enable wxPython event loop integration
%gui qt4|qt # enable PyQt4 event loop integration
%gui qt5 # enable PyQt5 event loop integration
%gui gtk # enable PyGTK event loop integration
%gui gtk3 # enable Gtk3 event loop integration
%gui tk # enable Tk event loop integration
%gui osx # enable Cocoa event loop integration
 # (requires %matplotlib 1.1)
%gui # disable all event loop integration

WARNING: a�er any of these has been called you can simply create an applica�on object,
but DO NOT start the event loop yourself, as we have already handled that.

%history [-n] [-o] [-p] [-t] [-f FILENAME] [-g [PATTERN [PATTERN ...]]]
 [-l [LIMIT]] [-u]
 [range [range ...]]

Print input history (_i<n> variables), with most recent last.

By default, input history is printed without line numbers so it can be directly pasted into an
editor. Use -n to show them.

By default, all input history from the current session is displayed. Ranges of history can be
indicated using the syntax:

Line 4, current session

Lines 4-6, current session

Lines 1-5, session 243

Line 7, session 2 before current

%history

4

4-6

243/1-5

~2/7

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 14/48

From the first line of 8 sessions ago, to the fi�h line of 6 sessions ago.

Mul�ple ranges can be entered, separated by spaces

The same syntax is used by %macro, %save, %edit, %rerun

Examples

In [6]: %history -n 4-6
4:a = 12
5:print a**2
6:%history -n 4-6

range

Kill all BG processes started by %%script and its family.

Load code into the current frontend.

-n print line numbers for each input. This feature is only available if numbered p

-o also print outputs for each input.

-p print classic ‘>>>’ python prompts before each input. This is useful for making

-t print the ‘translated’ history, as IPython understands it. IPython filters your in

-f FILENAME FILENAME: instead of prin�ng the output to the screen, redirect it to the give

-g <[PATTERN [PATTERN …]]>

 treat the arg as a glob pa�ern to search for in (full) history. This includes the s

-l <[LIMIT]> get the last n lines from all sessions. Specify n as a single arg, or the default is

-u when searching history using -g , show only unique history.

~8/1-~6/5

posi�onal arguments:

op�onal arguments:

%killbgscripts

%load

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 15/48

%load [op�ons] source

where source can be a filename, URL, input history range, macro, or element in the user
namespace

Op�ons:

-r <lines>: Specify lines or ranges of lines to load from the source. Ranges could be
specified as x-y (x..y) or in python-style x:y (x..(y-1)). Both limits x and y can be le� blank
(meaning the beginning and end of the file, respec�vely).

-s <symbols>: Specify func�on or classes to load from python source.

-y : Don’t ask confirma�on for loading source above 200 000 characters.

-n : Include the user’s namespace when searching for source code.

This magic command can either take a local filename, a URL, an history range (see %history)
or a macro as argument, it will prompt for confirma�on before loading source with more than
200 000 characters, unless -y flag is passed or if the frontend does not support raw_input:

%load myscript.py
%load 7-27
%load myMacro
%load http://www.example.com/myscript.py
%load -r 5-10 myscript.py
%load -r 10-20,30,40: foo.py
%load -s MyClass,wonder_function myscript.py
%load -n MyClass
%load -n my_module.wonder_function

Load an IPython extension by its module name.

Alias of %load

%loadpy has gained some flexibility and dropped the requirement of a .py extension. So it
has been renamed simply into %load. You can look at %load ’s docstring for more info.

Temporarily stop logging.

You must have previously started logging.

Usage:

%load_ext

%loadpy

%logoff

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 16/48

Restart logging.

This func�on is for restar�ng logging which you’ve temporarily stopped with %logoff. For
star�ng logging for the first �me, you must use the %logstart func�on, which allows you to
specify an op�onal log filename.

Start logging anywhere in a session.

%logstart [-o|-r|-t|-q] [log_name [log_mode]]

If no name is given, it defaults to a file named ‘ipython_log.py’ in your current directory, in
‘rotate’ mode (see below).

‘%logstart name’ saves to file ‘name’ in ‘backup’ mode. It saves your history up to that point
and then con�nues logging.

%logstart takes a second op�onal parameter: logging mode. This can be one of (note that the
modes are given unquoted):

Keep logging at the end of any exis�ng file.

Rename any exis�ng file to name~ and start name.

Append to a single logfile in your home directory.

Overwrite any exis�ng log.

Create rota�ng logs: name.1~, name.2~, etc.

Op�ons:

%logon

%logstart

append

backup

global

over

rotate

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 17/48

Since this marker is always the same, filtering only the output from a log is very easy,
using for example a simple awk call:

awk -F'#\[Out\]# ' '{if($2) {print $2}}' ipython_log.py

Print the status of the logging system.

Fully stop logging and close log file.

In order to start logging again, a new %logstart call needs to be made, possibly (though not
necessarily) with a new filename, mode and other op�ons.

List currently available magic func�ons.

Define a macro for future re-execu�on. It accepts ranges of history, filenames or string
objects.

%macro [op�ons] name n1-n2 n3-n4 … n5 .. n6 …

Op�ons:

-o log also IPython’s output. In this mode, all commands which generate an Out[NN] prom

-r log ‘raw’ input. Normally, IPython’s logs contain the processed input, so that user lines are

-t put �mestamps before each input line logged (these are put in comments).

-q suppress output of logstate message when logging is invoked

%logstate

%logstop

%ls magic

%macro

Usage:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 18/48

-r: use ‘raw’ input. By default, the ‘processed’ history is used, so that magic s are loaded
in their transformed version to valid Python. If this op�on is given, the raw input as typed
at the command line is used instead.

-q: quiet macro defini�on. By default, a tag line is printed to indicate the macro has been
created, and then the contents of the macro are printed. If this op�on is given, then no
printout is produced once the macro is created.

This will define a global variable called name which is a string made of joining the slices and
lines you specify (n1,n2,… numbers above) from your input history into a single string. This
variable acts like an automa�c func�on which re-executes those lines as if you had typed
them. You just type ‘name’ at the prompt and the code executes.

The syntax for indica�ng input ranges is described in %history.

Note: as a ‘hidden’ feature, you can also use tradi�onal python slice nota�on, where N:M
means numbers N through M-1.

For example, if your history contains (print using %hist -n):

44: x=1
45: y=3
46: z=x+y
47: print x
48: a=5
49: print 'x',x,'y',y

you can create a macro with lines 44 through 47 (included) and line 49 called my_macro with:

In [55]: %macro my_macro 44-47 49

Now, typing my_macro (without quotes) will re-execute all this code in one pass.

You don’t need to give the line-numbers in order, and any given line number can appear
mul�ple �mes. You can assemble macros with any lines from your input history in any order.

The macro is a simple object which holds its value in an a�ribute, but IPython’s display
system checks for macros and executes them as code instead of prin�ng them when you
type their name.

You can view a macro’s contents by explicitly prin�ng it with:

print macro_name

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 19/48

Print informa�on about the magic func�on system.

Supported formats: -latex, -brief, -rest

%matplotlib [-l] [gui]

Set up matplotlib to work interac�vely.

This func�on lets you ac�vate matplotlib interac�ve support at any point during an IPython
session. It does not import anything into the interac�ve namespace.

If you are using the inline matplotlib backend in the IPython Notebook you can set which
figure formats are enabled using the following:

In [1]: from IPython.display import set_matplotlib_formats

In [2]: set_matplotlib_formats('pdf', 'svg')

The default for inline figures sets bbox_inches to ‘�ght’. This can cause discrepancies between
the displayed image and the iden�cal image created using savefig . This behavior can be
disabled using the %config magic :

In [3]: %config InlineBackend.print_figure_kwargs = {'bbox_inches':None}

In addi�on, see the docstring of IPython.display.set_matplotlib_formats and
IPython.display.set_matplotlib_close for more informa�on on changing addi�onal behaviors

of the inline backend.

Examples

To enable the inline backend for usage with the IPython Notebook:

In [1]: %matplotlib inline

In this case, where the matplotlib default is TkAgg:

% magic

%matplotlib

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 20/48

In [2]: %matplotlib
Using matplotlib backend: TkAgg

But you can explicitly request a different GUI backend:

In [3]: %matplotlib qt

You can list the available backends using the -l/–list op�on:

In [4]: %matplotlib --list
Available matplotlib backends: ['osx', 'qt4', 'qt5', 'gtk3', 'notebook', 'wx', 'qt', 'nbagg',
'gtk', 'tk', 'inline']

‘inline’, ‘ipympl’, ‘nbagg’, ‘notebook’, ‘osx’, ‘pdf’, ‘ps’, ‘qt’, ‘qt4’, ‘qt5’, ‘svg’, ‘tk’, ‘widget’,
‘wx’). If given, the corresponding matplotlib backend is used, otherwise it will be
matplotlib’s default (which you can set in your matplotlib config file).

-l, --list Show available matplotlib backends

%notebook filename

Export and convert IPython notebooks.

This func�on can export the current IPython history to a notebook file. For example, to
export the history to “foo.ipynb” do “%notebook foo.ipynb”.

The -e or –export flag is deprecated in IPython 5.2, and will be removed in the future.

filename Notebook name or filename

posi�onal arguments:

gui Name of the matplotlib backend to use (‘agg’, ‘gtk’, ‘gtk3’,

op�onal arguments:

%notebook

posi�onal arguments:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 21/48

Pre�y print the object and display it through a pager.

%page [op�ons] OBJECT

If no object is given, use _ (last output).

Op�ons:

-r: page str(object), don’t pre�y-print it.

Upload code to dpaste’s paste bin, returning the URL.

%pastebin [-d “Custom descrip�on”] 1-7

The argument can be an input history range, a filename, or the name of a string or macro.

Op�ons:

“Pasted from IPython”.

Control the automa�c calling of the pdb interac�ve debugger.

Call as ‘%pdb on’, ‘%pdb 1’, ‘%pdb off’ or ‘%pdb 0’. If called without argument it works as a
toggle.

When an excep�on is triggered, IPython can op�onally call the interac�ve pdb debugger
a�er the traceback printout. %pdb toggles this feature on and off.

The ini�al state of this feature is set in your configura�on file (the op�on is
InteractiveShell.pdb).

If you want to just ac�vate the debugger AFTER an excep�on has fired, without having to
type ‘%pdb on’ and rerunning your code, you can use the %debug magic .

Print the call signature for any callable object.

If the object is a class, print the constructor informa�on.

Examples

%page

%pastebin

Usage:

-d: Pass a custom descrip�on for the gist. The default will say

%pdb

%pdef

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 22/48

In [3]: %pdef urllib.urlopen
urllib.urlopen(url, data=None, proxies=None)

Print the docstring for an object.

If the given object is a class, it will print both the class and the constructor docstrings.

Print (or run through pager) the file where an object is defined.

The file opens at the line where the object defini�on begins. IPython will honor the
environment variable PAGER if set, and otherwise will do its best to print the file in a
convenient form.

If the given argument is not an object currently defined, IPython will try to interpret it as a
filename (automa�cally adding a .py extension if needed). You can thus use %pfile as a syntax
highligh�ng code viewer.

Provide detailed informa�on about an object.

‘%pinfo object’ is just a synonym for object? or ?object.

Provide extra detailed informa�on about an object.

‘%pinfo2 object’ is just a synonym for object?? or ??object.

Intercept usage of pip in IPython and direct user to run command outside of IPython.

Change to directory popped off the top of the stack.

Toggle pre�y prin�ng on/off.

%pdoc

%pfile

%pinfo

%pinfo2

%pip

%popd

%pprint

%precision

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 23/48

Set floa�ng point precision for pre�y prin�ng.

Can set either integer precision or a format string.

If numpy has been imported and precision is an int, numpy display precision will also be set,
via numpy.set_printoptions .

If no argument is given, defaults will be restored.

Examples

In [1]: from math import pi

In [2]: %precision 3
Out[2]: u'%.3f'

In [3]: pi
Out[3]: 3.142

In [4]: %precision %i
Out[4]: u'%i'

In [5]: pi
Out[5]: 3

In [6]: %precision %e
Out[6]: u'%e'

In [7]: pi**10
Out[7]: 9.364805e+04

In [8]: %precision
Out[8]: u'%r'

In [9]: pi**10
Out[9]: 93648.047476082982

DEPRECATED since IPython 2.0.

Raise UsageError . To profile code use the prun magic .

See Also

prun : run code using the Python profiler (prun)

Run a statement through the python code profiler.

%profile

%prun

Usage, in line mode:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 24/48

%prun [op�ons] statement

%%prun [op�ons] [statement] code… code…

In cell mode, the addi�onal code lines are appended to the (possibly empty) statement in the
first line. Cell mode allows you to easily profile mul�line blocks without having to put them in
a separate func�on.

The given statement (which doesn’t require quote marks) is run via the python profiler in a
manner similar to the profile.run() func�on. Namespaces are internally managed to work
correctly; profile.run cannot be used in IPython because it makes certain assump�ons about
namespaces which do not hold under IPython.

Op�ons:

-l <limit>

you can place restric�ons on what or how much of the profile gets print

A string: only informa�on for func�on names containing this string is pri
An integer: only these many lines are printed.
A float (between 0 and 1): this frac�on of the report is printed (for exam

You can combine several limits with repeated use of the op�on. For exa

-r return the pstats.Stats object generated by the profiling. This object has all the i

Usage, in cell mode:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 25/48

If you want to run complete programs under the profiler’s control, use
%run -p [prof_opts] filename.py [args to program] where prof_opts contains profiler specific

op�ons as described here.

You can read the complete documenta�on for the profile module with:

In [1]: import profile; profile.help()

-s <key>

sort profile by given key. You can provide more than one key by using th

The following is copied verba�m from the profile documenta�on referen

When more than one key is provided, addi�onal keys are used as second

Abbrevia�ons can be used for any key names, as long as the abbrevia�o

Valid Arg Meaning

“calls” call count

“cumula�ve” cumula�ve �me

“file” file name

“module” file name

“pcalls” primi�ve call count

“line” line number

“name” func�on name

“nfl” name/file/line

“stdname” standard name

“�me” internal �me

Note that all sorts on sta�s�cs are in descending order (placing most �m

-T <filename> save profile results as shown on screen to a text file. The profile is s�ll shown on

-D <filename> save (via dump_stats) profile sta�s�cs to given filename. This data is in a format

-q suppress output to the pager. Best used with -T and/or -D above.

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 26/48

Search for object in namespaces by wildcard.

%psearch [op�ons] PATTERN [OBJECT TYPE]

Note: ? can be used as a synonym for %psearch, at the beginning or at the end: both a*? and
?a* are equivalent to ‘%psearch a*’. S�ll, the rest of the command line must be unchanged
(op�ons come first), so for example the following forms are equivalent

%psearch -i a* func�on -i a* func�on? ?-i a* func�on

Arguments:

PATTERN

where PATTERN is a string containing * as a wildcard similar to its use in a shell. The
pa�ern is matched in all namespaces on the search path. By default objects star�ng with
a single _ are not matched, many IPython generated objects have a single underscore. The
default is case insensi�ve matching. Matching is also done on the a�ributes of objects
and not only on the objects in a module.

[OBJECT TYPE]

Is the name of a python type from the types module. The name is given in lowercase
without the ending type, ex. StringType is wri�en string. By adding a type here only
objects matching the given type are matched. Using all here makes the pa�ern match all
types (this is the default).

Op�ons:

%psearch

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 27/48

-a: makes the pa�ern match even objects whose names start with a single underscore.
These names are normally omi�ed from the search.

-i/-c: make the pa�ern case insensi�ve/sensi�ve. If neither of these op�ons are given, the
default is read from your configura�on file, with the op�on
InteractiveShell.wildcards_case_sensitive . If this op�on is not specified in your

configura�on file, IPython’s internal default is to do a case sensi�ve search.

-e/-s NAMESPACE: exclude/search a given namespace. The pa�ern you specify can be
searched in any of the following namespaces: ‘buil�n’, ‘user’, ‘user_global’,’internal’, ‘alias’,
where ‘buil�n’ and ‘user’ are the search defaults. Note that you should not use quotes
when specifying namespaces.

‘Buil�n’ contains the python module buil�n, ‘user’ contains all user data, ‘alias’ only
contain the shell aliases and no python objects, ‘internal’ contains objects used by
IPython. The ‘user_global’ namespace is only used by embedded IPython instances, and it
contains module-level globals. You can add namespaces to the search with -s or exclude
them with -e (these op�ons can be given more than once).

Examples

%psearch a* -> objects beginning with an a
%psearch -e builtin a* -> objects NOT in the builtin space starting in a
%psearch a* function -> all functions beginning with an a
%psearch re.e* -> objects beginning with an e in module re
%psearch r*.e* -> objects that start with e in modules starting in r
%psearch r*.* string -> all strings in modules beginning with r

Case sensi�ve search:

%psearch -c a* list all object beginning with lower case a

Show objects beginning with a single _:

%psearch -a _* list objects beginning with a single underscore

Print (or run through pager) the source code for an object.

%psource

%pushd

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 28/48

Place the current dir on stack and change directory.

%pushd [‘dirname’]

Return the current working directory path.

Examples

In [9]: pwd
Out[9]: '/home/tsuser/sprint/ipython'

Show a syntax-highlighted file through a pager.

This magic is similar to the cat u�lity, but it will assume the file to be Python source and will
show it with syntax highligh�ng.

This magic command can either take a local filename, an url, an history range (see %history)
or a macro as argument

%pycat myscript.py
%pycat 7-27
%pycat myMacro
%pycat http://www.example.com/myscript.py

%pylab [--no-import-all] [gui]

Load numpy and matplotlib to work interac�vely.

This func�on lets you ac�vate pylab (matplotlib, numpy and interac�ve support) at any point
during an IPython session.

%pylab makes the following imports:

Usage:

%pwd

%pycat

%pylab

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 29/48

import numpy
import matplotlib
from matplotlib import pylab, mlab, pyplot
np = numpy
plt = pyplot

from IPython.display import display
from IPython.core.pylabtools import figsize, getfigs

from pylab import *
from numpy import *

If you pass --no-import-all , the last two * imports will be excluded.

See the %matplotlib magic for more details about ac�va�ng matplotlib without affec�ng
the interac�ve namespace.

‘gtk3’, ‘inline’, ‘ipympl’, ‘nbagg’, ‘notebook’, ‘osx’, ‘pdf’, ‘ps’, ‘qt’, ‘qt4’, ‘qt5’, ‘svg’, ‘tk’,
‘widget’, ‘wx’). If given, the corresponding matplotlib backend is used, otherwise it will
be matplotlib’s default (which you can set in your matplotlib config file).

Show a quick reference sheet

Repeat a command, or get command to input line for edi�ng.

%recall and %rep are equivalent.

%recall (no arguments):

Place a string version of last computa�on result (stored in the special ‘_’ variable) to the next
input prompt. Allows you to create elaborate command lines without using copy-paste:

--no-import-all

 Prevent IPython from performing import * into the interac�ve namespace. You can govern

posi�onal arguments:

gui Name of the matplotlib backend to use (‘agg’, ‘gtk’,

op�onal arguments:

%quickref

%recall

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 30/48

 In[1]: l = ["hei", "vaan"]
 In[2]: "".join(l)
Out[2]: heivaan
 In[3]: %recall
 In[4]: heivaan_ <== cursor blinking

%recall 45

Place history line 45 on the next input prompt. Use %hist to find out the number.

%recall 1-4

Combine the specified lines into one cell, and place it on the next input prompt. See %history
for the slice syntax.

%recall foo+bar

If foo+bar can be evaluated in the user namespace, the result is placed at the next input
prompt. Otherwise, the history is searched for lines which contain that substring, and the
most recent one is placed at the next input prompt.

Update the alias table with all executable files in $PATH.

rehashx explicitly checks that every entry in $PATH is a file with execute access (os.X_OK).

Under Windows, it checks executability as a match against a ‘|’-separated string of
extensions, stored in the IPython config variable win_exec_ext. This defaults to ‘exe|com|bat’.

This func�on also resets the root module cache of module completer, used on slow
filesystems.

Reload an IPython extension by its module name.

Re-run previous input

By default, you can specify ranges of input history to be repeated (as with %history). With no
arguments, it will repeat the last line.

Op�ons:

-l <n> : Repeat the last n lines of input, not including the current command.

-g foo : Repeat the most recent line which contains foo

%rehashx

%reload_ext

%rerun

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 31/48

Resets the namespace by removing all names defined by the user, if called without
arguments, or by removing some types of objects, such as everything currently in IPython’s
In[] and Out[] containers (see the parameters for details).

Parameters

-f : force reset without asking for confirma�on.

References to objects may be kept. By default (without this op�on), we do a ‘hard’ reset,
giving you a new session and removing all references to objects from the current session.

in : reset input history

out : reset output history

dhist : reset directory history

array : reset only variables that are NumPy arrays

See Also

reset_selec�ve : invoked as %reset_selective

Examples

In [6]: a = 1

In [7]: a
Out[7]: 1

In [8]: 'a' in _ip.user_ns
Out[8]: True

In [9]: %reset -f

In [1]: 'a' in _ip.user_ns
Out[1]: False

In [2]: %reset -f in
Flushing input history

In [3]: %reset -f dhist in
Flushing directory history
Flushing input history

Notes

Calling this magic from clients that do not implement standard input, such as the ipython
notebook interface, will reset the namespace without confirma�on.

%reset

-s :‘So�’ reset: Only clears your namespace, leaving history intact.

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 32/48

Resets the namespace by removing names defined by the user.

Input/Output history are le� around in case you need them.

%reset_selec�ve [-f] regex

No ac�on is taken if regex is not included

-f : force reset without asking for confirma�on.

See Also

reset : invoked as %reset

Examples

We first fully reset the namespace so your output looks iden�cal to this example for
pedagogical reasons; in prac�ce you do not need a full reset:

In [1]: %reset -f

Now, with a clean namespace we can make a few variables and use %reset_selective to only
delete names that match our regexp:

In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8

In [3]: who_ls
Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']

In [4]: %reset_selective -f b[2-3]m

In [5]: who_ls
Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']

In [6]: %reset_selective -f d

In [7]: who_ls
Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']

In [8]: %reset_selective -f c

In [9]: who_ls
Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']

In [10]: %reset_selective -f b

In [11]: who_ls
Out[11]: ['a']

%reset_selective

Op�ons

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 33/48

Notes

Calling this magic from clients that do not implement standard input, such as the ipython
notebook interface, will reset the namespace without confirma�on.

Run the named file inside IPython as a program.

Usage:

%run [-n -i -e -G]
 [(-t [-N<N>] | -d [-b<N>] | -p [profile options])]
 (-m mod | file) [args]

Parameters a�er the filename are passed as command-line arguments to the program (put in
sys.argv). Then, control returns to IPython’s prompt.

This is similar to running at a system prompt python file args , but with the advantage of
giving you IPython’s tracebacks, and of loading all variables into your interac�ve namespace
for further use (unless -p is used, see below).

The file is executed in a namespace ini�ally consis�ng only of __name__=='__main__' and
sys.argv constructed as indicated. It thus sees its environment as if it were being run as a
stand-alone program (except for sharing global objects such as previously imported modules).
But a�er execu�on, the IPython interac�ve namespace gets updated with all variables
defined in the program (except for __name__ and sys.argv). This allows for very convenient
loading of code for interac�ve work, while giving each program a ‘clean sheet’ to run in.

Arguments are expanded using shell-like glob match. Pa�erns ‘*’, ‘?’, ‘[seq]’ and ‘[!seq]’ can be
used. Addi�onally, �lde ‘~’ will be expanded into user’s home directory. Unlike real shells,
quota�on does not suppress expansions. Use two back slashes (e.g. *) to suppress
expansions. To completely disable these expansions, you can use -G flag.

Op�ons:

-n __name__ is NOT set to ‘__main__’, but to the running file’s name without extension (as python

-i run the file in IPython’s namespace instead of an empty one. This is useful if you are experime

-e ignore sys.exit() calls or SystemExit excep�ons in the script being run. This is par�cularly usefu

-t print �ming informa�on at the end of the run. IPython will give you an es�mated CPU �me co

%run

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 34/48

If -t is given, an addi�onal -N<N> op�on can be given, where <N> must be an integer
indica�ng how many �mes you want the script to run. The final �ming report will include
total and per run results.

For example (tes�ng the script uniq_stable.py):

In [1]: run -t uniq_stable

IPython CPU timings (estimated):
 User : 0.19597 s.
 System: 0.0 s.

In [2]: run -t -N5 uniq_stable

IPython CPU timings (estimated):
Total runs performed: 5
 Times : Total Per run
 User : 0.910862 s, 0.1821724 s.
 System: 0.0 s, 0.0 s.

-d

run your program under the control of pdb, the Python debugger. This allows you to

pdb.run('execfile("YOURFILENAME")')

with a breakpoint set on line 1 of your file. You can change the line number for this a

%run -d -b40 myscript

will set the first breakpoint at line 40 in myscript.py. Note that the first breakpoint m

Or you can specify a breakpoint in a different file:

%run -d -b myotherfile.py:20 myscript

When the pdb debugger starts, you will see a (Pdb) prompt. You must first enter ‘c’ (w

Entering ‘help’ gives informa�on about the use of the debugger. You can easily see p

-p

run program under the control of the Python profiler module (which prints a detailed

You can pass other op�ons a�er -p which affect the behavior of the profiler itself. Se

In this mode, the program’s variables do NOT propagate back to the IPython interac�

Internally this triggers a call to %prun, see its documenta�on for details on the op�o

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 35/48

There is one special usage for which the text above doesn’t apply: if the filename ends with
.ipy[nb], the file is run as ipython script, just as if the commands were wri�en on IPython
prompt.

Save a set of lines or a macro to a given filename.

%save [op�ons] filename n1-n2 n3-n4 … n5 .. n6 …

Op�ons:

-r: use ‘raw’ input. By default, the ‘processed’ history is used, so that magic s are loaded
in their transformed version to valid Python. If this op�on is given, the raw input as typed
as the command line is used instead.

-f: force overwrite. If file exists, %save will prompt for overwrite unless -f is given.

-a: append to the file instead of overwri�ng it.

This func�on uses the same syntax as %history for input ranges, then saves the lines to the
filename you specify.

It adds a ‘.py’ extension to the file if you don’t do so yourself, and it asks for confirma�on
before overwri�ng exis�ng files.

If -r op�on is used, the default extension is .ipy .

Shell capture - run shell command and capture output (DEPRECATED use !).

DEPRECATED. Subop�mal, retained for backwards compa�bility.

-m

specify module name to load instead of script path. Similar to the -m op�on for the p

%run -m example

will run the example module.

-G disable shell-like glob expansion of arguments.

%save

Usage:

%sc

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 36/48

You should use the form ‘var = !command’ instead. Example:

“%sc -l myfiles = ls ~” should now be wri�en as

“myfiles = !ls ~”

myfiles.s, myfiles.l and myfiles.n s�ll apply as documented below.

%sc [op�ons] varname=command

IPython will run the given command using commands .getoutput(), and will then update the
user’s interac�ve namespace with a variable called varname, containing the value of the call.
Your command can contain shell wildcards, pipes, etc.

The ‘=’ sign in the syntax is mandatory, and the variable name you supply must follow
Python’s standard conven�ons for valid names.

(A special format without variable name exists for internal use)

Op�ons:

-l: list output. Split the output on newlines into a list before assigning it to the given
variable. By default the output is stored as a single string.

-v: verbose. Print the contents of the variable.

In most cases you should not need to split as a list, because the returned value is a special
type of string which can automa�cally provide its contents either as a list (split on newlines)
or as a space-separated string. These are convenient, respec�vely, either for sequen�al
processing or to be passed to a shell command.

For example:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 37/48

Capture into variable a
In [1]: sc a=ls *py

a is a string with embedded newlines
In [2]: a
Out[2]: 'setup.py\nwin32_manual_post_install.py'

which can be seen as a list:
In [3]: a.l
Out[3]: ['setup.py', 'win32_manual_post_install.py']

or as a whitespace-separated string:
In [4]: a.s
Out[4]: 'setup.py win32_manual_post_install.py'

a.s is useful to pass as a single command line:
In [5]: !wc -l $a.s
 146 setup.py
 130 win32_manual_post_install.py
 276 total

while the list form is useful to loop over:
In [6]: for f in a.l:
 ...: !wc -l $f
 ...:
146 setup.py
130 win32_manual_post_install.py

Similarly, the lists returned by the -l op�on are also special, in the sense that you can equally
invoke the .s a�ribute on them to automa�cally get a whitespace-separated string from their
contents:

In [7]: sc -l b=ls *py

In [8]: b
Out[8]: ['setup.py', 'win32_manual_post_install.py']

In [9]: b.s
Out[9]: 'setup.py win32_manual_post_install.py'

In summary, both the lists and strings used for output capture have the following special
a�ributes:

.l (or .list) : value as list.

.n (or .nlstr): value as newline-separated string.

.s (or .spstr): value as space-separated string.

%set_env

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 38/48

Set environment variables. Assump�ons are that either “val” is a name in the user
namespace, or val is something that evaluates to a string.

%set_env var val: set value for var %set_env var=val: set value for var %set_env var=$val:
set value for var, using python expansion if possible

Shell execute - run shell command and capture output (!! is short-hand).

%sx command

IPython will run the given command using commands .getoutput(), and return the result
forma�ed as a list (split on ‘n’). Since the output is _returned_, it will be stored in ipython’s
regular output cache Out[N] and in the ‘_N’ automa�c variables.

Notes:

1) If an input line begins with ‘!!’, then %sx is automa�cally invoked. That is, while:

!ls

causes ipython to simply issue system(‘ls’), typing:

!!ls

is a shorthand equivalent to:

%sx ls

2) %sx differs from %sc in that %sx automa�cally splits into a list, like ‘%sc -l’. The reason for
this is to make it as easy as possible to process line-oriented shell output via further python
commands . %sc is meant to provide much finer control, but requires more typing.

3) Just like %sc -l, this is a list with special a�ributes:

.l (or .list) : value as list.

.n (or .nlstr): value as newline-separated string.

.s (or .spstr): value as whitespace-separated string.

Usage:

%sx

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 39/48

This is very useful when trying to use such lists as arguments to system commands .

Shell execute - run shell command and capture output (!! is short-hand).

%sx command

IPython will run the given command using commands .getoutput(), and return the result
forma�ed as a list (split on ‘n’). Since the output is _returned_, it will be stored in ipython’s
regular output cache Out[N] and in the ‘_N’ automa�c variables.

Notes:

1) If an input line begins with ‘!!’, then %sx is automa�cally invoked. That is, while:

!ls

causes ipython to simply issue system(‘ls’), typing:

!!ls

is a shorthand equivalent to:

%sx ls

2) %sx differs from %sc in that %sx automa�cally splits into a list, like ‘%sc -l’. The reason for
this is to make it as easy as possible to process line-oriented shell output via further python
commands . %sc is meant to provide much finer control, but requires more typing.

3) Just like %sc -l, this is a list with special a�ributes:

.l (or .list) : value as list.

.n (or .nlstr): value as newline-separated string.

.s (or .spstr): value as whitespace-separated string.

This is very useful when trying to use such lists as arguments to system commands .

Print the last traceback with the currently ac�ve excep�on mode.

%system

%tb

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 40/48

See %xmode for changing excep�on repor�ng modes.

Time execu�on of a Python statement or expression.

The CPU and wall clock �mes are printed, and the value of the expression (if any) is returned.
Note that under Win32, system �me is always reported as 0, since it can not be measured.

This func�on can be used both as a line and cell magic :

In line mode you can �me a single-line statement (though mul�ple ones can be chained
with using semicolons).
In cell mode, you can �me the cell body (a directly following statement raises an error).

This func�on provides very basic �ming func�onality. Use the �meit magic for more
control over the measurement.

Examples

In [1]: %time 2**128
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00
Out[1]: 340282366920938463463374607431768211456L

In [2]: n = 1000000

In [3]: %time sum(range(n))
CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
Wall time: 1.37
Out[3]: 499999500000L

In [4]: %time print 'hello world'
hello world
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00

Note that the time needed by Python to compile the given expression
will be reported if it is more than 0.1s. In this example, the
actual exponentiation is done by Python at compilation time, so while
the expression can take a noticeable amount of time to compute, that
time is purely due to the compilation:

In [5]: %time 3**9999;
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s

In [6]: %time 3**999999;
CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.00 s
Compiler : 0.78 s

%time

%timeit

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 41/48

Time execu�on of a Python statement or expression

%�meit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement

%%�meit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code code code…

Time execu�on of a Python statement or expression using the �meit module. This func�on
can be used both as a line and cell magic :

In line mode you can �me a single-line statement (though mul�ple ones can be chained
with using semicolons).
In cell mode, the statement in the first line is used as setup code (executed but not �med)
and the body of the cell is �med. The cell body has access to any variables created in the
setup code.

Op�ons: -n<N>: execute the given statement <N> �mes in a loop. If this value is not given, a
fi�ng value is chosen.

-r<R>: repeat the loop itera�on <R> �mes and take the best result. Default: 3

-t: use �me.�me to measure the �me, which is the default on Unix. This func�on measures
wall �me.

-c: use �me.clock to measure the �me, which is the default on Windows and measures wall
�me. On Unix, resource.getrusage is used instead and returns the CPU user �me.

-p<P>: use a precision of <P> digits to display the �ming result. Default: 3

-q: Quiet, do not print result.

the result in more details.

Examples

Usage, in line mode:

or in cell mode:

-o: return a TimeitResult that can be stored in a variable to inspect

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 42/48

In [1]: %timeit pass
8.26 ns ± 0.12 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)

In [2]: u = None

In [3]: %timeit u is None
29.9 ns ± 0.643 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)

In [4]: %timeit -r 4 u == None

In [5]: import time

In [6]: %timeit -n1 time.sleep(2)

The �mes reported by %�meit will be slightly higher than those reported by the �meit.py
script when variables are accessed. This is due to the fact that %�meit executes the
statement in the namespace of the shell, compared with �meit.py, which uses a single setup
statement to import func�on or create variables. Generally, the bias does not ma�er as long
as results from �meit.py are not mixed with those from %�meit.

Remove an alias

Unload an IPython extension by its module name.

Not all extensions can be unloaded, only those which define an unload_ipython_extension

func�on.

Print all interac�ve variables, with some minimal forma�ng.

If any arguments are given, only variables whose type matches one of these are printed. For
example:

%who function str

will only list func�ons and strings, excluding all other types of variables. To find the proper
type names, simply use type(var) at a command line to see how python prints type names.
For example:

%unalias

%unload_ext

%who

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 43/48

In [1]: type('hello')\
Out[1]: <type 'str'>

indicates that the type name for strings is ‘str’.

%who always excludes executed names loaded through your configura�on file and things
which are internal to IPython.

This is deliberate, as typically you may load many modules and the purpose of %who is to
show you only what you’ve manually defined.

Examples

Define two variables and list them with who:

In [1]: alpha = 123

In [2]: beta = 'test'

In [3]: %who
alpha beta

In [4]: %who int
alpha

In [5]: %who str
beta

Return a sorted list of all interac�ve variables.

If arguments are given, only variables of types matching these arguments are returned.

Examples

Define two variables and list them with who_ls:

In [1]: alpha = 123

In [2]: beta = 'test'

In [3]: %who_ls
Out[3]: ['alpha', 'beta']

In [4]: %who_ls int
Out[4]: ['alpha']

In [5]: %who_ls str
Out[5]: ['beta']

%who_ls

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 44/48

Like %who, but gives some extra informa�on about each variable.

The same type filtering of %who can be applied here.

For all variables, the type is printed. Addi�onally it prints:

For {},[],(): their length.
For numpy arrays, a summary with shape, number of elements, typecode and size in
memory.
Everything else: a string representa�on, snipping their middle if too long.

Examples

Define two variables and list them with whos:

In [1]: alpha = 123

In [2]: beta = 'test'

In [3]: %whos
Variable Type Data/Info

alpha int 123
beta str test

Delete a variable, trying to clear it from anywhere that IPython’s machinery has references to
it. By default, this uses the iden�ty of the named object in the user namespace to remove
references held under other names. The object is also removed from the output history.

-n : Delete the specified name from all namespaces, without checking their iden�ty.

Switch modes for the excep�on handlers.

Valid modes: Plain, Context and Verbose.

If called without arguments, acts as a toggle.

Cell magic s

%whos

%xdel

Op�ons

%xmode

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 45/48

%%bash script magic

Run cells with bash in a subprocess.

This is a shortcut for %%script bash

%capture [--no-stderr] [--no-stdout] [--no-display] [output]

run the cell, capturing stdout, stderr, and IPython’s rich display() calls.

u�ls.io.CapturedIO object with stdout/err a�ributes for the text of the captured
output. CapturedOutput also has a show() method for displaying the output, and
__call__ as well, so you can use that to quickly display the output. If unspecified,
captured output is discarded.

--no-stderr Don’t capture stderr.

--no-stdout Don’t capture stdout.

--no-display Don’t capture IPython’s rich display.

%html [--isolated]

Render the cell as a block of HTML

--isolated Annotate the cell as ‘isolated’. Isolated cells are rendered inside their own <ifram

%%bash

%%capture

posi�onal arguments:

output The name of the variable in which to store output. This is a

op�onal arguments:

%%html

op�onal arguments:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 46/48

Run the cell block of Javascript code

Run the cell block of Javascript code

Alias of %%javascript

Render the cell as a block of latex

The subset of latex which is support depends on the implementa�on in the client. In the
Jupyter Notebook, this magic only renders the subset of latex defined by MathJax [here]
(h�ps://docs.mathjax.org/en/v2.5-latest/tex.html).

Render the cell as Markdown text block

%%perl script magic

Run cells with perl in a subprocess.

This is a shortcut for %%script perl

%%pypy script magic

Run cells with pypy in a subprocess.

This is a shortcut for %%script pypy

%%python script magic

Run cells with python in a subprocess.

This is a shortcut for %%script python

%%python2 script magic

%%javascript

%%js

%%latex

%%markdown

%%perl

%%pypy

%%python

%%python2

https://docs.mathjax.org/en/v2.5-latest/tex.html

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 47/48

Run cells with python2 in a subprocess.

This is a shortcut for %%script python2

%%python3 script magic

Run cells with python3 in a subprocess.

This is a shortcut for %%script python3

%%ruby script magic

Run cells with ruby in a subprocess.

This is a shortcut for %%script ruby

%shebang [--proc PROC] [--bg] [--err ERR] [--out OUT]

Run a cell via a shell command

The %%script line is like the #! line of script, specifying a program (bash, perl, ruby, etc.) with
which to run.

The rest of the cell is run by that program.

Examples

In [1]: %%script bash
 ...: for i in 1 2 3; do
 ...: echo $i
 ...: done
1
2
3

--proc PROC The variable in which to store Popen instance. This is used only when –bg op�

--bg Whether to run the script in the background. If given, the only way to see the

%%python3

%%ruby

%%script

op�onal arguments:

8/18/2018 Built-in magic commands — IPython 6.5.0 documentation

https://ipython.readthedocs.io/en/stable/interactive/magics.html?highlight=magic%20commands 48/48

%%sh script magic

Run cells with sh in a subprocess.

This is a shortcut for %%script sh

Render the cell as an SVG literal

%writefile [-a] filename

Write the contents of the cell to a file.

The file will be overwri�en unless the -a (–append) flag is specified.

filename file to write

--err ERR The variable in which to store stderr from the script. If the script is background

--out OUT The variable in which to store stdout from the script. If the script is backgroun

-a, --append Append contents of the cell to an exis�ng file. The file will be created if it doe

%%sh

%%svg

%%writefile

posi�onal arguments:

op�onal arguments:

